Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

2y^{2}=21+2y
Multiply both sides of the equation by 2.
2y^{2}-21=2y
Subtract 21 from both sides.
2y^{2}-21-2y=0
Subtract 2y from both sides.
2y^{2}-2y-21=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-21\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -2 for b, and -21 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-2\right)±\sqrt{4-4\times 2\left(-21\right)}}{2\times 2}
Square -2.
y=\frac{-\left(-2\right)±\sqrt{4-8\left(-21\right)}}{2\times 2}
Multiply -4 times 2.
y=\frac{-\left(-2\right)±\sqrt{4+168}}{2\times 2}
Multiply -8 times -21.
y=\frac{-\left(-2\right)±\sqrt{172}}{2\times 2}
Add 4 to 168.
y=\frac{-\left(-2\right)±2\sqrt{43}}{2\times 2}
Take the square root of 172.
y=\frac{2±2\sqrt{43}}{2\times 2}
The opposite of -2 is 2.
y=\frac{2±2\sqrt{43}}{4}
Multiply 2 times 2.
y=\frac{2\sqrt{43}+2}{4}
Now solve the equation y=\frac{2±2\sqrt{43}}{4} when ± is plus. Add 2 to 2\sqrt{43}.
y=\frac{\sqrt{43}+1}{2}
Divide 2+2\sqrt{43} by 4.
y=\frac{2-2\sqrt{43}}{4}
Now solve the equation y=\frac{2±2\sqrt{43}}{4} when ± is minus. Subtract 2\sqrt{43} from 2.
y=\frac{1-\sqrt{43}}{2}
Divide 2-2\sqrt{43} by 4.
y=\frac{\sqrt{43}+1}{2} y=\frac{1-\sqrt{43}}{2}
The equation is now solved.
2y^{2}=21+2y
Multiply both sides of the equation by 2.
2y^{2}-2y=21
Subtract 2y from both sides.
\frac{2y^{2}-2y}{2}=\frac{21}{2}
Divide both sides by 2.
y^{2}+\left(-\frac{2}{2}\right)y=\frac{21}{2}
Dividing by 2 undoes the multiplication by 2.
y^{2}-y=\frac{21}{2}
Divide -2 by 2.
y^{2}-y+\left(-\frac{1}{2}\right)^{2}=\frac{21}{2}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-y+\frac{1}{4}=\frac{21}{2}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}-y+\frac{1}{4}=\frac{43}{4}
Add \frac{21}{2} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{1}{2}\right)^{2}=\frac{43}{4}
Factor y^{2}-y+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{1}{2}\right)^{2}}=\sqrt{\frac{43}{4}}
Take the square root of both sides of the equation.
y-\frac{1}{2}=\frac{\sqrt{43}}{2} y-\frac{1}{2}=-\frac{\sqrt{43}}{2}
Simplify.
y=\frac{\sqrt{43}+1}{2} y=\frac{1-\sqrt{43}}{2}
Add \frac{1}{2} to both sides of the equation.