Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}-\frac{1}{16}=0
Subtract \frac{1}{16} from both sides.
16y^{2}-1=0
Multiply both sides by 16.
\left(4y-1\right)\left(4y+1\right)=0
Consider 16y^{2}-1. Rewrite 16y^{2}-1 as \left(4y\right)^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
y=\frac{1}{4} y=-\frac{1}{4}
To find equation solutions, solve 4y-1=0 and 4y+1=0.
y=\frac{1}{4} y=-\frac{1}{4}
Take the square root of both sides of the equation.
y^{2}-\frac{1}{16}=0
Subtract \frac{1}{16} from both sides.
y=\frac{0±\sqrt{0^{2}-4\left(-\frac{1}{16}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{1}{16} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\left(-\frac{1}{16}\right)}}{2}
Square 0.
y=\frac{0±\sqrt{\frac{1}{4}}}{2}
Multiply -4 times -\frac{1}{16}.
y=\frac{0±\frac{1}{2}}{2}
Take the square root of \frac{1}{4}.
y=\frac{1}{4}
Now solve the equation y=\frac{0±\frac{1}{2}}{2} when ± is plus.
y=-\frac{1}{4}
Now solve the equation y=\frac{0±\frac{1}{2}}{2} when ± is minus.
y=\frac{1}{4} y=-\frac{1}{4}
The equation is now solved.