Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}+y=\frac{14}{25}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y^{2}+y-\frac{14}{25}=\frac{14}{25}-\frac{14}{25}
Subtract \frac{14}{25} from both sides of the equation.
y^{2}+y-\frac{14}{25}=0
Subtracting \frac{14}{25} from itself leaves 0.
y=\frac{-1±\sqrt{1^{2}-4\left(-\frac{14}{25}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 1 for b, and -\frac{14}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-1±\sqrt{1-4\left(-\frac{14}{25}\right)}}{2}
Square 1.
y=\frac{-1±\sqrt{1+\frac{56}{25}}}{2}
Multiply -4 times -\frac{14}{25}.
y=\frac{-1±\sqrt{\frac{81}{25}}}{2}
Add 1 to \frac{56}{25}.
y=\frac{-1±\frac{9}{5}}{2}
Take the square root of \frac{81}{25}.
y=\frac{\frac{4}{5}}{2}
Now solve the equation y=\frac{-1±\frac{9}{5}}{2} when ± is plus. Add -1 to \frac{9}{5}.
y=\frac{2}{5}
Divide \frac{4}{5} by 2.
y=-\frac{\frac{14}{5}}{2}
Now solve the equation y=\frac{-1±\frac{9}{5}}{2} when ± is minus. Subtract \frac{9}{5} from -1.
y=-\frac{7}{5}
Divide -\frac{14}{5} by 2.
y=\frac{2}{5} y=-\frac{7}{5}
The equation is now solved.
y^{2}+y=\frac{14}{25}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
y^{2}+y+\left(\frac{1}{2}\right)^{2}=\frac{14}{25}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+y+\frac{1}{4}=\frac{14}{25}+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}+y+\frac{1}{4}=\frac{81}{100}
Add \frac{14}{25} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{1}{2}\right)^{2}=\frac{81}{100}
Factor y^{2}+y+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{1}{2}\right)^{2}}=\sqrt{\frac{81}{100}}
Take the square root of both sides of the equation.
y+\frac{1}{2}=\frac{9}{10} y+\frac{1}{2}=-\frac{9}{10}
Simplify.
y=\frac{2}{5} y=-\frac{7}{5}
Subtract \frac{1}{2} from both sides of the equation.