Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}+9+9y=0
Add 9y to both sides.
y^{2}+9y+9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-9±\sqrt{9^{2}-4\times 9}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 9 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-9±\sqrt{81-4\times 9}}{2}
Square 9.
y=\frac{-9±\sqrt{81-36}}{2}
Multiply -4 times 9.
y=\frac{-9±\sqrt{45}}{2}
Add 81 to -36.
y=\frac{-9±3\sqrt{5}}{2}
Take the square root of 45.
y=\frac{3\sqrt{5}-9}{2}
Now solve the equation y=\frac{-9±3\sqrt{5}}{2} when ± is plus. Add -9 to 3\sqrt{5}.
y=\frac{-3\sqrt{5}-9}{2}
Now solve the equation y=\frac{-9±3\sqrt{5}}{2} when ± is minus. Subtract 3\sqrt{5} from -9.
y=\frac{3\sqrt{5}-9}{2} y=\frac{-3\sqrt{5}-9}{2}
The equation is now solved.
y^{2}+9+9y=0
Add 9y to both sides.
y^{2}+9y=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
y^{2}+9y+\left(\frac{9}{2}\right)^{2}=-9+\left(\frac{9}{2}\right)^{2}
Divide 9, the coefficient of the x term, by 2 to get \frac{9}{2}. Then add the square of \frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+9y+\frac{81}{4}=-9+\frac{81}{4}
Square \frac{9}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}+9y+\frac{81}{4}=\frac{45}{4}
Add -9 to \frac{81}{4}.
\left(y+\frac{9}{2}\right)^{2}=\frac{45}{4}
Factor y^{2}+9y+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{9}{2}\right)^{2}}=\sqrt{\frac{45}{4}}
Take the square root of both sides of the equation.
y+\frac{9}{2}=\frac{3\sqrt{5}}{2} y+\frac{9}{2}=-\frac{3\sqrt{5}}{2}
Simplify.
y=\frac{3\sqrt{5}-9}{2} y=\frac{-3\sqrt{5}-9}{2}
Subtract \frac{9}{2} from both sides of the equation.