Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=620 ab=-72000
To solve the equation, factor y^{2}+620y-72000 using formula y^{2}+\left(a+b\right)y+ab=\left(y+a\right)\left(y+b\right). To find a and b, set up a system to be solved.
-1,72000 -2,36000 -3,24000 -4,18000 -5,14400 -6,12000 -8,9000 -9,8000 -10,7200 -12,6000 -15,4800 -16,4500 -18,4000 -20,3600 -24,3000 -25,2880 -30,2400 -32,2250 -36,2000 -40,1800 -45,1600 -48,1500 -50,1440 -60,1200 -64,1125 -72,1000 -75,960 -80,900 -90,800 -96,750 -100,720 -120,600 -125,576 -144,500 -150,480 -160,450 -180,400 -192,375 -200,360 -225,320 -240,300 -250,288
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -72000.
-1+72000=71999 -2+36000=35998 -3+24000=23997 -4+18000=17996 -5+14400=14395 -6+12000=11994 -8+9000=8992 -9+8000=7991 -10+7200=7190 -12+6000=5988 -15+4800=4785 -16+4500=4484 -18+4000=3982 -20+3600=3580 -24+3000=2976 -25+2880=2855 -30+2400=2370 -32+2250=2218 -36+2000=1964 -40+1800=1760 -45+1600=1555 -48+1500=1452 -50+1440=1390 -60+1200=1140 -64+1125=1061 -72+1000=928 -75+960=885 -80+900=820 -90+800=710 -96+750=654 -100+720=620 -120+600=480 -125+576=451 -144+500=356 -150+480=330 -160+450=290 -180+400=220 -192+375=183 -200+360=160 -225+320=95 -240+300=60 -250+288=38
Calculate the sum for each pair.
a=-100 b=720
The solution is the pair that gives sum 620.
\left(y-100\right)\left(y+720\right)
Rewrite factored expression \left(y+a\right)\left(y+b\right) using the obtained values.
y=100 y=-720
To find equation solutions, solve y-100=0 and y+720=0.
a+b=620 ab=1\left(-72000\right)=-72000
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as y^{2}+ay+by-72000. To find a and b, set up a system to be solved.
-1,72000 -2,36000 -3,24000 -4,18000 -5,14400 -6,12000 -8,9000 -9,8000 -10,7200 -12,6000 -15,4800 -16,4500 -18,4000 -20,3600 -24,3000 -25,2880 -30,2400 -32,2250 -36,2000 -40,1800 -45,1600 -48,1500 -50,1440 -60,1200 -64,1125 -72,1000 -75,960 -80,900 -90,800 -96,750 -100,720 -120,600 -125,576 -144,500 -150,480 -160,450 -180,400 -192,375 -200,360 -225,320 -240,300 -250,288
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -72000.
-1+72000=71999 -2+36000=35998 -3+24000=23997 -4+18000=17996 -5+14400=14395 -6+12000=11994 -8+9000=8992 -9+8000=7991 -10+7200=7190 -12+6000=5988 -15+4800=4785 -16+4500=4484 -18+4000=3982 -20+3600=3580 -24+3000=2976 -25+2880=2855 -30+2400=2370 -32+2250=2218 -36+2000=1964 -40+1800=1760 -45+1600=1555 -48+1500=1452 -50+1440=1390 -60+1200=1140 -64+1125=1061 -72+1000=928 -75+960=885 -80+900=820 -90+800=710 -96+750=654 -100+720=620 -120+600=480 -125+576=451 -144+500=356 -150+480=330 -160+450=290 -180+400=220 -192+375=183 -200+360=160 -225+320=95 -240+300=60 -250+288=38
Calculate the sum for each pair.
a=-100 b=720
The solution is the pair that gives sum 620.
\left(y^{2}-100y\right)+\left(720y-72000\right)
Rewrite y^{2}+620y-72000 as \left(y^{2}-100y\right)+\left(720y-72000\right).
y\left(y-100\right)+720\left(y-100\right)
Factor out y in the first and 720 in the second group.
\left(y-100\right)\left(y+720\right)
Factor out common term y-100 by using distributive property.
y=100 y=-720
To find equation solutions, solve y-100=0 and y+720=0.
y^{2}+620y-72000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-620±\sqrt{620^{2}-4\left(-72000\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 620 for b, and -72000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-620±\sqrt{384400-4\left(-72000\right)}}{2}
Square 620.
y=\frac{-620±\sqrt{384400+288000}}{2}
Multiply -4 times -72000.
y=\frac{-620±\sqrt{672400}}{2}
Add 384400 to 288000.
y=\frac{-620±820}{2}
Take the square root of 672400.
y=\frac{200}{2}
Now solve the equation y=\frac{-620±820}{2} when ± is plus. Add -620 to 820.
y=100
Divide 200 by 2.
y=-\frac{1440}{2}
Now solve the equation y=\frac{-620±820}{2} when ± is minus. Subtract 820 from -620.
y=-720
Divide -1440 by 2.
y=100 y=-720
The equation is now solved.
y^{2}+620y-72000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
y^{2}+620y-72000-\left(-72000\right)=-\left(-72000\right)
Add 72000 to both sides of the equation.
y^{2}+620y=-\left(-72000\right)
Subtracting -72000 from itself leaves 0.
y^{2}+620y=72000
Subtract -72000 from 0.
y^{2}+620y+310^{2}=72000+310^{2}
Divide 620, the coefficient of the x term, by 2 to get 310. Then add the square of 310 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+620y+96100=72000+96100
Square 310.
y^{2}+620y+96100=168100
Add 72000 to 96100.
\left(y+310\right)^{2}=168100
Factor y^{2}+620y+96100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+310\right)^{2}}=\sqrt{168100}
Take the square root of both sides of the equation.
y+310=410 y+310=-410
Simplify.
y=100 y=-720
Subtract 310 from both sides of the equation.
x ^ 2 +620x -72000 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -620 rs = -72000
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -310 - u s = -310 + u
Two numbers r and s sum up to -620 exactly when the average of the two numbers is \frac{1}{2}*-620 = -310. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-310 - u) (-310 + u) = -72000
To solve for unknown quantity u, substitute these in the product equation rs = -72000
96100 - u^2 = -72000
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -72000-96100 = -168100
Simplify the expression by subtracting 96100 on both sides
u^2 = 168100 u = \pm\sqrt{168100} = \pm 410
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-310 - 410 = -720 s = -310 + 410 = 100
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.