y ^ { 2 } + 5 y - 6 : ( \frac { y } { 6 } - \frac { 6 } { y } =
Evaluate
\frac{y\left(y^{3}+5y^{2}-36y-216\right)}{y^{2}-36}
Differentiate w.r.t. y
\frac{2y^{5}+5y^{4}-144y^{3}-324y^{2}+2592y+7776}{\left(y^{2}-36\right)^{2}}
Graph
Share
Copied to clipboard
y^{2}+5y-\frac{6}{\frac{yy}{6y}-\frac{6\times 6}{6y}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and y is 6y. Multiply \frac{y}{6} times \frac{y}{y}. Multiply \frac{6}{y} times \frac{6}{6}.
y^{2}+5y-\frac{6}{\frac{yy-6\times 6}{6y}}
Since \frac{yy}{6y} and \frac{6\times 6}{6y} have the same denominator, subtract them by subtracting their numerators.
y^{2}+5y-\frac{6}{\frac{y^{2}-36}{6y}}
Do the multiplications in yy-6\times 6.
y^{2}+5y-\frac{6\times 6y}{y^{2}-36}
Divide 6 by \frac{y^{2}-36}{6y} by multiplying 6 by the reciprocal of \frac{y^{2}-36}{6y}.
y^{2}+5y-\frac{36y}{y^{2}-36}
Multiply 6 and 6 to get 36.
y^{2}+5y-\frac{36y}{\left(y-6\right)\left(y+6\right)}
Factor y^{2}-36.
\frac{\left(y^{2}+5y\right)\left(y-6\right)\left(y+6\right)}{\left(y-6\right)\left(y+6\right)}-\frac{36y}{\left(y-6\right)\left(y+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply y^{2}+5y times \frac{\left(y-6\right)\left(y+6\right)}{\left(y-6\right)\left(y+6\right)}.
\frac{\left(y^{2}+5y\right)\left(y-6\right)\left(y+6\right)-36y}{\left(y-6\right)\left(y+6\right)}
Since \frac{\left(y^{2}+5y\right)\left(y-6\right)\left(y+6\right)}{\left(y-6\right)\left(y+6\right)} and \frac{36y}{\left(y-6\right)\left(y+6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{y^{4}-36y^{2}+5y^{3}-180y-36y}{\left(y-6\right)\left(y+6\right)}
Do the multiplications in \left(y^{2}+5y\right)\left(y-6\right)\left(y+6\right)-36y.
\frac{y^{4}-36y^{2}+5y^{3}-216y}{\left(y-6\right)\left(y+6\right)}
Combine like terms in y^{4}-36y^{2}+5y^{3}-180y-36y.
\frac{y^{4}-36y^{2}+5y^{3}-216y}{y^{2}-36}
Expand \left(y-6\right)\left(y+6\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}