Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}+5y-\frac{6}{\frac{yy}{6y}-\frac{6\times 6}{6y}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and y is 6y. Multiply \frac{y}{6} times \frac{y}{y}. Multiply \frac{6}{y} times \frac{6}{6}.
y^{2}+5y-\frac{6}{\frac{yy-6\times 6}{6y}}
Since \frac{yy}{6y} and \frac{6\times 6}{6y} have the same denominator, subtract them by subtracting their numerators.
y^{2}+5y-\frac{6}{\frac{y^{2}-36}{6y}}
Do the multiplications in yy-6\times 6.
y^{2}+5y-\frac{6\times 6y}{y^{2}-36}
Divide 6 by \frac{y^{2}-36}{6y} by multiplying 6 by the reciprocal of \frac{y^{2}-36}{6y}.
y^{2}+5y-\frac{36y}{y^{2}-36}
Multiply 6 and 6 to get 36.
y^{2}+5y-\frac{36y}{\left(y-6\right)\left(y+6\right)}
Factor y^{2}-36.
\frac{\left(y^{2}+5y\right)\left(y-6\right)\left(y+6\right)}{\left(y-6\right)\left(y+6\right)}-\frac{36y}{\left(y-6\right)\left(y+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply y^{2}+5y times \frac{\left(y-6\right)\left(y+6\right)}{\left(y-6\right)\left(y+6\right)}.
\frac{\left(y^{2}+5y\right)\left(y-6\right)\left(y+6\right)-36y}{\left(y-6\right)\left(y+6\right)}
Since \frac{\left(y^{2}+5y\right)\left(y-6\right)\left(y+6\right)}{\left(y-6\right)\left(y+6\right)} and \frac{36y}{\left(y-6\right)\left(y+6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{y^{4}-36y^{2}+5y^{3}-180y-36y}{\left(y-6\right)\left(y+6\right)}
Do the multiplications in \left(y^{2}+5y\right)\left(y-6\right)\left(y+6\right)-36y.
\frac{y^{4}-36y^{2}+5y^{3}-216y}{\left(y-6\right)\left(y+6\right)}
Combine like terms in y^{4}-36y^{2}+5y^{3}-180y-36y.
\frac{y^{4}-36y^{2}+5y^{3}-216y}{y^{2}-36}
Expand \left(y-6\right)\left(y+6\right).