Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}+5y=625
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y^{2}+5y-625=625-625
Subtract 625 from both sides of the equation.
y^{2}+5y-625=0
Subtracting 625 from itself leaves 0.
y=\frac{-5±\sqrt{5^{2}-4\left(-625\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 5 for b, and -625 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-5±\sqrt{25-4\left(-625\right)}}{2}
Square 5.
y=\frac{-5±\sqrt{25+2500}}{2}
Multiply -4 times -625.
y=\frac{-5±\sqrt{2525}}{2}
Add 25 to 2500.
y=\frac{-5±5\sqrt{101}}{2}
Take the square root of 2525.
y=\frac{5\sqrt{101}-5}{2}
Now solve the equation y=\frac{-5±5\sqrt{101}}{2} when ± is plus. Add -5 to 5\sqrt{101}.
y=\frac{-5\sqrt{101}-5}{2}
Now solve the equation y=\frac{-5±5\sqrt{101}}{2} when ± is minus. Subtract 5\sqrt{101} from -5.
y=\frac{5\sqrt{101}-5}{2} y=\frac{-5\sqrt{101}-5}{2}
The equation is now solved.
y^{2}+5y=625
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
y^{2}+5y+\left(\frac{5}{2}\right)^{2}=625+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+5y+\frac{25}{4}=625+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}+5y+\frac{25}{4}=\frac{2525}{4}
Add 625 to \frac{25}{4}.
\left(y+\frac{5}{2}\right)^{2}=\frac{2525}{4}
Factor y^{2}+5y+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{5}{2}\right)^{2}}=\sqrt{\frac{2525}{4}}
Take the square root of both sides of the equation.
y+\frac{5}{2}=\frac{5\sqrt{101}}{2} y+\frac{5}{2}=-\frac{5\sqrt{101}}{2}
Simplify.
y=\frac{5\sqrt{101}-5}{2} y=\frac{-5\sqrt{101}-5}{2}
Subtract \frac{5}{2} from both sides of the equation.