Solve for y_0
y_{0}=\frac{100000000000000\left(y^{2}-15000\right)}{3213938048432697}
Solve for y
y=\frac{\sqrt{3213938048432697y_{0}+1500000000000000000}}{2}
y=-\frac{\sqrt{3213938048432697y_{0}+1500000000000000000}}{2}\text{, }y_{0}\geq -\frac{500000000000000000}{1071312682810899}
Graph
Share
Copied to clipboard
y ^ {2} + 25 ^ {2} - 2 \cdot 25 y 0.6427876096865394 = 125 ^ {2}
Evaluate trigonometric functions in the problem
y^{2}+625-2\times 25y_{0}\times 0.6427876096865394=125^{2}
Calculate 25 to the power of 2 and get 625.
y^{2}+625-50y_{0}\times 0.6427876096865394=125^{2}
Multiply 2 and 25 to get 50.
y^{2}+625-32.13938048432697y_{0}=125^{2}
Multiply 50 and 0.6427876096865394 to get 32.13938048432697.
y^{2}+625-32.13938048432697y_{0}=15625
Calculate 125 to the power of 2 and get 15625.
625-32.13938048432697y_{0}=15625-y^{2}
Subtract y^{2} from both sides.
-32.13938048432697y_{0}=15625-y^{2}-625
Subtract 625 from both sides.
-32.13938048432697y_{0}=15000-y^{2}
Subtract 625 from 15625 to get 15000.
\frac{-32.13938048432697y_{0}}{-32.13938048432697}=\frac{15000-y^{2}}{-32.13938048432697}
Divide both sides of the equation by -32.13938048432697, which is the same as multiplying both sides by the reciprocal of the fraction.
y_{0}=\frac{15000-y^{2}}{-32.13938048432697}
Dividing by -32.13938048432697 undoes the multiplication by -32.13938048432697.
y_{0}=\frac{100000000000000y^{2}}{3213938048432697}-\frac{500000000000000000}{1071312682810899}
Divide 15000-y^{2} by -32.13938048432697 by multiplying 15000-y^{2} by the reciprocal of -32.13938048432697.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}