Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{y^{2}-x}{x-y}\text{, }&y\neq x\\b\in \mathrm{C}\text{, }&\left(x=0\text{ and }y=0\right)\text{ or }\left(x=1\text{ and }y=1\right)\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{y\left(y-b\right)}{b-1}\text{, }&b\neq 1\\x\in \mathrm{C}\text{, }&\left(y=0\text{ or }y=1\right)\text{ and }b=1\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{y^{2}-x}{x-y}\text{, }&y\neq x\\b\in \mathrm{R}\text{, }&\left(x=0\text{ and }y=0\right)\text{ or }\left(x=1\text{ and }y=1\right)\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{y\left(y-b\right)}{b-1}\text{, }&b\neq 1\\x\in \mathrm{R}\text{, }&\left(y=0\text{ or }y=1\right)\text{ and }b=1\end{matrix}\right.
Graph
Share
Copied to clipboard
y^{2}+xb-yb-x=0
Use the distributive property to multiply x-y by b.
xb-yb-x=-y^{2}
Subtract y^{2} from both sides. Anything subtracted from zero gives its negation.
xb-yb=-y^{2}+x
Add x to both sides.
\left(x-y\right)b=-y^{2}+x
Combine all terms containing b.
\left(x-y\right)b=x-y^{2}
The equation is in standard form.
\frac{\left(x-y\right)b}{x-y}=\frac{x-y^{2}}{x-y}
Divide both sides by x-y.
b=\frac{x-y^{2}}{x-y}
Dividing by x-y undoes the multiplication by x-y.
y^{2}+xb-yb-x=0
Use the distributive property to multiply x-y by b.
xb-yb-x=-y^{2}
Subtract y^{2} from both sides. Anything subtracted from zero gives its negation.
xb-x=-y^{2}+yb
Add yb to both sides.
\left(b-1\right)x=-y^{2}+yb
Combine all terms containing x.
\left(b-1\right)x=by-y^{2}
The equation is in standard form.
\frac{\left(b-1\right)x}{b-1}=\frac{y\left(b-y\right)}{b-1}
Divide both sides by b-1.
x=\frac{y\left(b-y\right)}{b-1}
Dividing by b-1 undoes the multiplication by b-1.
y^{2}+xb-yb-x=0
Use the distributive property to multiply x-y by b.
xb-yb-x=-y^{2}
Subtract y^{2} from both sides. Anything subtracted from zero gives its negation.
xb-yb=-y^{2}+x
Add x to both sides.
\left(x-y\right)b=-y^{2}+x
Combine all terms containing b.
\left(x-y\right)b=x-y^{2}
The equation is in standard form.
\frac{\left(x-y\right)b}{x-y}=\frac{x-y^{2}}{x-y}
Divide both sides by x-y.
b=\frac{x-y^{2}}{x-y}
Dividing by x-y undoes the multiplication by x-y.
y^{2}+xb-yb-x=0
Use the distributive property to multiply x-y by b.
xb-yb-x=-y^{2}
Subtract y^{2} from both sides. Anything subtracted from zero gives its negation.
xb-x=-y^{2}+yb
Add yb to both sides.
\left(b-1\right)x=-y^{2}+yb
Combine all terms containing x.
\left(b-1\right)x=by-y^{2}
The equation is in standard form.
\frac{\left(b-1\right)x}{b-1}=\frac{y\left(b-y\right)}{b-1}
Divide both sides by b-1.
x=\frac{y\left(b-y\right)}{b-1}
Dividing by b-1 undoes the multiplication by b-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}