Factor
\frac{\left(y+6\right)\left(2y+1\right)}{2}
Evaluate
y^{2}+\frac{13y}{2}+3
Graph
Share
Copied to clipboard
\frac{2y^{2}+13y+6}{2}
Factor out \frac{1}{2}.
a+b=13 ab=2\times 6=12
Consider 2y^{2}+13y+6. Factor the expression by grouping. First, the expression needs to be rewritten as 2y^{2}+ay+by+6. To find a and b, set up a system to be solved.
1,12 2,6 3,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 12.
1+12=13 2+6=8 3+4=7
Calculate the sum for each pair.
a=1 b=12
The solution is the pair that gives sum 13.
\left(2y^{2}+y\right)+\left(12y+6\right)
Rewrite 2y^{2}+13y+6 as \left(2y^{2}+y\right)+\left(12y+6\right).
y\left(2y+1\right)+6\left(2y+1\right)
Factor out y in the first and 6 in the second group.
\left(2y+1\right)\left(y+6\right)
Factor out common term 2y+1 by using distributive property.
\frac{\left(2y+1\right)\left(y+6\right)}{2}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}