Solve for y (complex solution)
y=-\frac{\cos(2x)+1}{2\sin(x)}
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{2}
Solve for x
x=\pi +2n_{96}\pi +\left(-1\right)arcSin(\frac{1}{2}y+\left(-\frac{1}{2}\right)\left(y^{2}+4\right)^{\frac{1}{2}})\text{, }n_{96}\in \mathrm{Z}\text{, }\exists n_{91}\in \mathrm{Z}\text{ : }\left(\left(y>\left(-\frac{1}{4}\right)\left(4+\left(-4\right)\left(-1\right)^{n_{91}}SinI(\frac{1}{2}\pi \left(1+\left(-2\right)n_{91}\right))\right)\left(SinI(\frac{1}{2}\pi \left(1+\left(-2\right)n_{91}\right))\right)^{-1}\text{ and }\exists n_{100}\in \mathrm{Z}\text{ : }n_{91}=\left(-2\right)n_{100}\text{ and }not(n_{91}>1+2n_{96})\text{ and }n_{91}\text{bmod}2=0\text{ and }not(y<\left(-2\right)\left(-1\right)^{n_{91}})\text{ and }not(n_{91}<-1+2n_{96})\text{ and }y>0\right)\text{ or }\left(n_{91}\text{bmod}2=0\text{ and }not(y<\left(-2\right)\left(-1\right)^{n_{91}})\text{ and }n_{91}=-1+2n_{96}\text{ and }y>0\right)\text{ or }\left(not(y>2SinI(\frac{1}{2}\pi \left(1+\left(-2\right)n_{91}\right)))\text{ and }not(y<0)\text{ and }n_{91}=1+2n_{96}\right)\text{ or }\left(not(y>2SinI(\frac{1}{2}\pi \left(1+\left(-2\right)n_{91}\right)))\text{ and }not(n_{91}>1+2n_{96})\text{ and }n_{91}\text{bmod}2=0\text{ and }not(y<\left(-2\right)\left(-1\right)^{n_{91}})\text{ and }not(n_{91}<-1+2n_{96})\text{ and }y>0\right)\right)\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\pi +2n_{96}\pi +\left(-1\right)arcSin(\frac{1}{2}y+\left(-\frac{1}{2}\right)\left(y^{2}+4\right)^{\frac{1}{2}})=\frac{1}{2}\pi +\pi n_{1}
x=arcSin(\frac{1}{2}y+\left(-\frac{1}{2}\right)\left(y^{2}+4\right)^{\frac{1}{2}})+2\pi n_{2}\text{, }n_{2}\in \mathrm{Z}\text{, }\nexists n_{1}\in \mathrm{Z}\text{ : }arcSin(\frac{1}{2}y+\left(-\frac{1}{2}\right)\left(y^{2}+4\right)^{\frac{1}{2}})+2\pi n_{2}=\frac{1}{2}\pi +\pi n_{1}\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }arcSin(\frac{1}{2}y+\left(-\frac{1}{2}\right)\left(y^{2}+4\right)^{\frac{1}{2}})+2\pi n_{2}=\frac{1}{2}\pi +\pi n_{1}
x=\pi +2\pi n_{48}+\left(-1\right)arcSin(\frac{1}{2}y+\frac{1}{2}\left(y^{2}+4\right)^{\frac{1}{2}})\text{, }n_{48}\in \mathrm{Z}\text{, }\nexists n_{1}\in \mathrm{Z}\text{ : }\pi +2\pi n_{48}+\left(-1\right)arcSin(\frac{1}{2}y+\frac{1}{2}\left(y^{2}+4\right)^{\frac{1}{2}})=\frac{1}{2}\pi +\pi n_{1}\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\pi +2\pi n_{48}+\left(-1\right)arcSin(\frac{1}{2}y+\frac{1}{2}\left(y^{2}+4\right)^{\frac{1}{2}})=\frac{1}{2}\pi +\pi n_{1}
x=arcSin(\frac{1}{2}y+\frac{1}{2}\left(y^{2}+4\right)^{\frac{1}{2}})+2\pi n_{47}\text{, }n_{47}\in \mathrm{Z}\text{, }\nexists n_{1}\in \mathrm{Z}\text{ : }arcSin(\frac{1}{2}y+\frac{1}{2}\left(y^{2}+4\right)^{\frac{1}{2}})+2\pi n_{47}=\frac{1}{2}\pi +\pi n_{1}\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }arcSin(\frac{1}{2}y+\frac{1}{2}\left(y^{2}+4\right)^{\frac{1}{2}})+2\pi n_{47}=\frac{1}{2}\pi +\pi n_{1}
Solve for y
y=-\cos(x)\cot(x)
\exists n_{1}\in \mathrm{Z}\text{ : }\left(x>\frac{\pi n_{1}}{2}\text{ and }x<\frac{\pi n_{1}}{2}+\frac{\pi }{2}\right)
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}