Solve for a
a=-\frac{y\left(x+1\right)}{x^{2}}
y\neq 0\text{ and }x\neq 0
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{\sqrt{y\left(y-4a\right)}+y}{2a}\text{; }x=-\frac{-\sqrt{y\left(y-4a\right)}+y}{2a}\text{, }&a\neq 0\text{ and }y\neq 0\\x=-1\text{, }&a=0\text{ and }y\neq 0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{\sqrt{y\left(y-4a\right)}+y}{2a}\text{; }x=-\frac{-\sqrt{y\left(y-4a\right)}+y}{2a}\text{, }&\left(y<0\text{ or }y\geq 4a\right)\text{ and }y\neq 0\text{ and }a\neq 0\text{ and }\left(y>0\text{ or }y\leq 4a\right)\\x=-1\text{, }&a=0\text{ and }y\neq 0\end{matrix}\right.
Share
Copied to clipboard
xy\frac{\mathrm{d}}{\mathrm{d}x}(y)-axx=y\left(x+1\right)
Multiply both sides of the equation by xy, the least common multiple of y,x.
xy\frac{\mathrm{d}}{\mathrm{d}x}(y)-ax^{2}=y\left(x+1\right)
Multiply x and x to get x^{2}.
xy\frac{\mathrm{d}}{\mathrm{d}x}(y)-ax^{2}=yx+y
Use the distributive property to multiply y by x+1.
-ax^{2}=yx+y-xy\frac{\mathrm{d}}{\mathrm{d}x}(y)
Subtract xy\frac{\mathrm{d}}{\mathrm{d}x}(y) from both sides.
\left(-x^{2}\right)a=xy+y
The equation is in standard form.
\frac{\left(-x^{2}\right)a}{-x^{2}}=\frac{xy+y}{-x^{2}}
Divide both sides by -x^{2}.
a=\frac{xy+y}{-x^{2}}
Dividing by -x^{2} undoes the multiplication by -x^{2}.
a=-\frac{y\left(x+1\right)}{x^{2}}
Divide yx+y by -x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}