y ^ { \prime } = ( x ^ { 2 } - x ) \frac { d } { d x ^ { 2 } - x ^ { 2 } } - 2 \frac { d } { d x } ( x ^ { 2 } - x )
Solve for d (complex solution)
d=-\frac{2x\left(1-2x\right)}{4x^{2}-3x+1}
x\neq 1\text{ and }x\neq \frac{3+\sqrt{7}i}{8}\text{ and }x\neq \frac{-\sqrt{7}i+3}{8}\text{ and }x\neq 0
Solve for d
d=-\frac{2x\left(1-2x\right)}{4x^{2}-3x+1}
x\neq 1\text{ and }x\neq 0
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{-\sqrt{4+4d-7d^{2}}+3d-2}{8\left(d-1\right)}\text{, }&d\neq 1\\x=\frac{\sqrt{4+4d-7d^{2}}+3d-2}{8\left(d-1\right)}\text{, }&d\neq 1\text{ and }d\neq 0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{-\sqrt{4+4d-7d^{2}}+3d-2}{8\left(d-1\right)}\text{, }&d\neq 1\text{ and }d\geq \frac{2-4\sqrt{2}}{7}\text{ and }d\leq \frac{4\sqrt{2}+2}{7}\\x=\frac{\sqrt{4+4d-7d^{2}}+3d-2}{8\left(d-1\right)}\text{, }&d\neq 0\text{ and }d\neq 1\text{ and }d\geq \frac{2-4\sqrt{2}}{7}\text{ and }d\leq \frac{4\sqrt{2}+2}{7}\end{matrix}\right.
Share
Copied to clipboard
\left(d-1\right)x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)=\left(x^{2}-x\right)d-2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)\left(d-1\right)x^{2}
Variable d cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by \left(d-1\right)x^{2}.
\left(dx^{2}-x^{2}\right)\frac{\mathrm{d}}{\mathrm{d}x}(y)=\left(x^{2}-x\right)d-2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)\left(d-1\right)x^{2}
Use the distributive property to multiply d-1 by x^{2}.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)=\left(x^{2}-x\right)d-2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)\left(d-1\right)x^{2}
Use the distributive property to multiply dx^{2}-x^{2} by \frac{\mathrm{d}}{\mathrm{d}x}(y).
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)=x^{2}d-xd-2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)\left(d-1\right)x^{2}
Use the distributive property to multiply x^{2}-x by d.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)\left(d-1\right)x^{2}=x^{2}d-xd
Add 2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)\left(d-1\right)x^{2} to both sides.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+\left(2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)d-4x+2\right)x^{2}=x^{2}d-xd
Use the distributive property to multiply 2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x) by d-1.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)dx^{2}-4x^{3}+2x^{2}=x^{2}d-xd
Use the distributive property to multiply 2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)d-4x+2 by x^{2}.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)dx^{2}-4x^{3}+2x^{2}-x^{2}d=-xd
Subtract x^{2}d from both sides.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)dx^{2}-4x^{3}+2x^{2}-x^{2}d+xd=0
Add xd to both sides.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)dx^{2}-4x^{3}+2x^{2}-x^{2}d+xd=x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)
Add x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y) to both sides. Anything plus zero gives itself.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)dx^{2}+2x^{2}-x^{2}d+xd=x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+4x^{3}
Add 4x^{3} to both sides.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)dx^{2}-x^{2}d+xd=x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+4x^{3}-2x^{2}
Subtract 2x^{2} from both sides.
\left(x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)x^{2}-x^{2}+x\right)d=x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+4x^{3}-2x^{2}
Combine all terms containing d.
\left(4x^{3}-3x^{2}+x\right)d=4x^{3}-2x^{2}
The equation is in standard form.
\frac{\left(4x^{3}-3x^{2}+x\right)d}{4x^{3}-3x^{2}+x}=\frac{2\left(2x-1\right)x^{2}}{4x^{3}-3x^{2}+x}
Divide both sides by 4x^{3}-3x^{2}+x.
d=\frac{2\left(2x-1\right)x^{2}}{4x^{3}-3x^{2}+x}
Dividing by 4x^{3}-3x^{2}+x undoes the multiplication by 4x^{3}-3x^{2}+x.
d=\frac{2x\left(2x-1\right)}{4x^{2}-3x+1}
Divide 2\left(-1+2x\right)x^{2} by 4x^{3}-3x^{2}+x.
d=\frac{2x\left(2x-1\right)}{4x^{2}-3x+1}\text{, }d\neq 1
Variable d cannot be equal to 1.
\left(d-1\right)x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)=\left(x^{2}-x\right)d-2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)\left(d-1\right)x^{2}
Variable d cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by \left(d-1\right)x^{2}.
\left(dx^{2}-x^{2}\right)\frac{\mathrm{d}}{\mathrm{d}x}(y)=\left(x^{2}-x\right)d-2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)\left(d-1\right)x^{2}
Use the distributive property to multiply d-1 by x^{2}.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)=\left(x^{2}-x\right)d-2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)\left(d-1\right)x^{2}
Use the distributive property to multiply dx^{2}-x^{2} by \frac{\mathrm{d}}{\mathrm{d}x}(y).
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)=x^{2}d-xd-2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)\left(d-1\right)x^{2}
Use the distributive property to multiply x^{2}-x by d.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)\left(d-1\right)x^{2}=x^{2}d-xd
Add 2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)\left(d-1\right)x^{2} to both sides.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+\left(2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)d-4x+2\right)x^{2}=x^{2}d-xd
Use the distributive property to multiply 2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x) by d-1.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)dx^{2}-4x^{3}+2x^{2}=x^{2}d-xd
Use the distributive property to multiply 2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)d-4x+2 by x^{2}.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)dx^{2}-4x^{3}+2x^{2}-x^{2}d=-xd
Subtract x^{2}d from both sides.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)dx^{2}-4x^{3}+2x^{2}-x^{2}d+xd=0
Add xd to both sides.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)dx^{2}-4x^{3}+2x^{2}-x^{2}d+xd=x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)
Add x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y) to both sides. Anything plus zero gives itself.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)dx^{2}+2x^{2}-x^{2}d+xd=x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+4x^{3}
Add 4x^{3} to both sides.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)dx^{2}-x^{2}d+xd=x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+4x^{3}-2x^{2}
Subtract 2x^{2} from both sides.
\left(x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)x^{2}-x^{2}+x\right)d=x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+4x^{3}-2x^{2}
Combine all terms containing d.
\left(4x^{3}-3x^{2}+x\right)d=4x^{3}-2x^{2}
The equation is in standard form.
\frac{\left(4x^{3}-3x^{2}+x\right)d}{4x^{3}-3x^{2}+x}=\frac{2\left(2x-1\right)x^{2}}{4x^{3}-3x^{2}+x}
Divide both sides by 4x^{3}-3x^{2}+x.
d=\frac{2\left(2x-1\right)x^{2}}{4x^{3}-3x^{2}+x}
Dividing by 4x^{3}-3x^{2}+x undoes the multiplication by 4x^{3}-3x^{2}+x.
d=\frac{2x\left(2x-1\right)}{4x^{2}-3x+1}
Divide 2\left(-1+2x\right)x^{2} by 4x^{3}-3x^{2}+x.
d=\frac{2x\left(2x-1\right)}{4x^{2}-3x+1}\text{, }d\neq 1
Variable d cannot be equal to 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}