Skip to main content
Solve for d (complex solution)
Tick mark Image
Solve for d
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image

Similar Problems from Web Search

Share

\left(d-1\right)x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)=\left(x^{2}-x\right)d-2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)\left(d-1\right)x^{2}
Variable d cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by \left(d-1\right)x^{2}.
\left(dx^{2}-x^{2}\right)\frac{\mathrm{d}}{\mathrm{d}x}(y)=\left(x^{2}-x\right)d-2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)\left(d-1\right)x^{2}
Use the distributive property to multiply d-1 by x^{2}.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)=\left(x^{2}-x\right)d-2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)\left(d-1\right)x^{2}
Use the distributive property to multiply dx^{2}-x^{2} by \frac{\mathrm{d}}{\mathrm{d}x}(y).
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)=x^{2}d-xd-2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)\left(d-1\right)x^{2}
Use the distributive property to multiply x^{2}-x by d.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)\left(d-1\right)x^{2}=x^{2}d-xd
Add 2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)\left(d-1\right)x^{2} to both sides.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+\left(2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)d-4x+2\right)x^{2}=x^{2}d-xd
Use the distributive property to multiply 2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x) by d-1.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)dx^{2}-4x^{3}+2x^{2}=x^{2}d-xd
Use the distributive property to multiply 2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)d-4x+2 by x^{2}.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)dx^{2}-4x^{3}+2x^{2}-x^{2}d=-xd
Subtract x^{2}d from both sides.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)dx^{2}-4x^{3}+2x^{2}-x^{2}d+xd=0
Add xd to both sides.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)dx^{2}-4x^{3}+2x^{2}-x^{2}d+xd=x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)
Add x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y) to both sides. Anything plus zero gives itself.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)dx^{2}+2x^{2}-x^{2}d+xd=x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+4x^{3}
Add 4x^{3} to both sides.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)dx^{2}-x^{2}d+xd=x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+4x^{3}-2x^{2}
Subtract 2x^{2} from both sides.
\left(x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)x^{2}-x^{2}+x\right)d=x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+4x^{3}-2x^{2}
Combine all terms containing d.
\left(4x^{3}-3x^{2}+x\right)d=4x^{3}-2x^{2}
The equation is in standard form.
\frac{\left(4x^{3}-3x^{2}+x\right)d}{4x^{3}-3x^{2}+x}=\frac{2\left(2x-1\right)x^{2}}{4x^{3}-3x^{2}+x}
Divide both sides by 4x^{3}-3x^{2}+x.
d=\frac{2\left(2x-1\right)x^{2}}{4x^{3}-3x^{2}+x}
Dividing by 4x^{3}-3x^{2}+x undoes the multiplication by 4x^{3}-3x^{2}+x.
d=\frac{2x\left(2x-1\right)}{4x^{2}-3x+1}
Divide 2\left(-1+2x\right)x^{2} by 4x^{3}-3x^{2}+x.
d=\frac{2x\left(2x-1\right)}{4x^{2}-3x+1}\text{, }d\neq 1
Variable d cannot be equal to 1.
\left(d-1\right)x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)=\left(x^{2}-x\right)d-2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)\left(d-1\right)x^{2}
Variable d cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by \left(d-1\right)x^{2}.
\left(dx^{2}-x^{2}\right)\frac{\mathrm{d}}{\mathrm{d}x}(y)=\left(x^{2}-x\right)d-2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)\left(d-1\right)x^{2}
Use the distributive property to multiply d-1 by x^{2}.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)=\left(x^{2}-x\right)d-2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)\left(d-1\right)x^{2}
Use the distributive property to multiply dx^{2}-x^{2} by \frac{\mathrm{d}}{\mathrm{d}x}(y).
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)=x^{2}d-xd-2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)\left(d-1\right)x^{2}
Use the distributive property to multiply x^{2}-x by d.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)\left(d-1\right)x^{2}=x^{2}d-xd
Add 2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)\left(d-1\right)x^{2} to both sides.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+\left(2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)d-4x+2\right)x^{2}=x^{2}d-xd
Use the distributive property to multiply 2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x) by d-1.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)dx^{2}-4x^{3}+2x^{2}=x^{2}d-xd
Use the distributive property to multiply 2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)d-4x+2 by x^{2}.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)dx^{2}-4x^{3}+2x^{2}-x^{2}d=-xd
Subtract x^{2}d from both sides.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)dx^{2}-4x^{3}+2x^{2}-x^{2}d+xd=0
Add xd to both sides.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)dx^{2}-4x^{3}+2x^{2}-x^{2}d+xd=x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)
Add x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y) to both sides. Anything plus zero gives itself.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)dx^{2}+2x^{2}-x^{2}d+xd=x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+4x^{3}
Add 4x^{3} to both sides.
dx^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)dx^{2}-x^{2}d+xd=x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+4x^{3}-2x^{2}
Subtract 2x^{2} from both sides.
\left(x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x)x^{2}-x^{2}+x\right)d=x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+4x^{3}-2x^{2}
Combine all terms containing d.
\left(4x^{3}-3x^{2}+x\right)d=4x^{3}-2x^{2}
The equation is in standard form.
\frac{\left(4x^{3}-3x^{2}+x\right)d}{4x^{3}-3x^{2}+x}=\frac{2\left(2x-1\right)x^{2}}{4x^{3}-3x^{2}+x}
Divide both sides by 4x^{3}-3x^{2}+x.
d=\frac{2\left(2x-1\right)x^{2}}{4x^{3}-3x^{2}+x}
Dividing by 4x^{3}-3x^{2}+x undoes the multiplication by 4x^{3}-3x^{2}+x.
d=\frac{2x\left(2x-1\right)}{4x^{2}-3x+1}
Divide 2\left(-1+2x\right)x^{2} by 4x^{3}-3x^{2}+x.
d=\frac{2x\left(2x-1\right)}{4x^{2}-3x+1}\text{, }d\neq 1
Variable d cannot be equal to 1.