Skip to main content
Solve for I
Tick mark Image
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

\frac{\mathrm{d}}{\mathrm{d}x}(y)=Irx^{2}-3Irx+7Ir
Use the distributive property to multiply Ir by x^{2}-3x+7.
Irx^{2}-3Irx+7Ir=\frac{\mathrm{d}}{\mathrm{d}x}(y)
Swap sides so that all variable terms are on the left hand side.
\left(rx^{2}-3rx+7r\right)I=\frac{\mathrm{d}}{\mathrm{d}x}(y)
Combine all terms containing I.
\left(rx^{2}-3rx+7r\right)I=0
The equation is in standard form.
I=0
Divide 0 by rx^{2}-3rx+7r.
\frac{\mathrm{d}}{\mathrm{d}x}(y)=Irx^{2}-3Irx+7Ir
Use the distributive property to multiply Ir by x^{2}-3x+7.
Irx^{2}-3Irx+7Ir=\frac{\mathrm{d}}{\mathrm{d}x}(y)
Swap sides so that all variable terms are on the left hand side.
\left(Ix^{2}-3Ix+7I\right)r=\frac{\mathrm{d}}{\mathrm{d}x}(y)
Combine all terms containing r.
\left(Ix^{2}-3Ix+7I\right)r=0
The equation is in standard form.
r=0
Divide 0 by Ix^{2}-3Ix+7I.