y ^ { \prime } = \frac { - a } { ( x + d x ) ^ { 2 } }
Solve for a
a=0
d\neq -1\text{ and }x\neq 0
Solve for d
d\neq -1
a=0\text{ and }x\neq 0
Share
Copied to clipboard
x^{2}\left(d+1\right)^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)=-a
Multiply both sides of the equation by x^{2}\left(d+1\right)^{2}.
x^{2}\left(d^{2}+2d+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(y)=-a
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(d+1\right)^{2}.
\left(x^{2}d^{2}+2x^{2}d+x^{2}\right)\frac{\mathrm{d}}{\mathrm{d}x}(y)=-a
Use the distributive property to multiply x^{2} by d^{2}+2d+1.
x^{2}d^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2x^{2}d\frac{\mathrm{d}}{\mathrm{d}x}(y)+x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)=-a
Use the distributive property to multiply x^{2}d^{2}+2x^{2}d+x^{2} by \frac{\mathrm{d}}{\mathrm{d}x}(y).
-a=x^{2}d^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2x^{2}d\frac{\mathrm{d}}{\mathrm{d}x}(y)+x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)
Swap sides so that all variable terms are on the left hand side.
-a=0
The equation is in standard form.
a=0
Divide 0 by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}