Skip to main content
Solve for a
Tick mark Image
Solve for d
Tick mark Image

Similar Problems from Web Search

Share

x^{2}\left(d+1\right)^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)=-a
Multiply both sides of the equation by x^{2}\left(d+1\right)^{2}.
x^{2}\left(d^{2}+2d+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(y)=-a
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(d+1\right)^{2}.
\left(x^{2}d^{2}+2x^{2}d+x^{2}\right)\frac{\mathrm{d}}{\mathrm{d}x}(y)=-a
Use the distributive property to multiply x^{2} by d^{2}+2d+1.
x^{2}d^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2x^{2}d\frac{\mathrm{d}}{\mathrm{d}x}(y)+x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)=-a
Use the distributive property to multiply x^{2}d^{2}+2x^{2}d+x^{2} by \frac{\mathrm{d}}{\mathrm{d}x}(y).
-a=x^{2}d^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+2x^{2}d\frac{\mathrm{d}}{\mathrm{d}x}(y)+x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)
Swap sides so that all variable terms are on the left hand side.
-a=0
The equation is in standard form.
a=0
Divide 0 by -1.