Solve for a
a=\frac{6}{x}
x\neq 0
Solve for x
x=\frac{6}{a}
a\neq 0
Share
Copied to clipboard
x^{4}\frac{\mathrm{d}}{\mathrm{d}x}(y)=x^{2}\left(-a\right)\times 1+3\times 2x
Multiply both sides of the equation by x^{4}, the least common multiple of x^{2},x^{4}.
x^{4}\frac{\mathrm{d}}{\mathrm{d}x}(y)=x^{2}\left(-a\right)\times 1+6x
Multiply 3 and 2 to get 6.
x^{2}\left(-a\right)\times 1+6x=x^{4}\frac{\mathrm{d}}{\mathrm{d}x}(y)
Swap sides so that all variable terms are on the left hand side.
x^{2}\left(-a\right)\times 1=x^{4}\frac{\mathrm{d}}{\mathrm{d}x}(y)-6x
Subtract 6x from both sides.
\left(-a\right)x^{2}=x^{4}\frac{\mathrm{d}}{\mathrm{d}x}(y)-6x
Reorder the terms.
-ax^{2}=x^{4}\frac{\mathrm{d}}{\mathrm{d}x}(y)-6x
Reorder the terms.
\left(-x^{2}\right)a=-6x
The equation is in standard form.
\frac{\left(-x^{2}\right)a}{-x^{2}}=-\frac{6x}{-x^{2}}
Divide both sides by -x^{2}.
a=-\frac{6x}{-x^{2}}
Dividing by -x^{2} undoes the multiplication by -x^{2}.
a=\frac{6}{x}
Divide -6x by -x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}