Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{y^{\frac{1}{m}}+y^{-\frac{1}{m}}}{2}\text{, }&y\neq 0\text{ and }m\neq 0\\x\in \mathrm{C}\text{, }&y=0\text{ and }m\neq 0\end{matrix}\right.
Solve for x
x=\frac{y^{\frac{1}{m}}+y^{-\frac{1}{m}}}{2}
\left(y>0\text{ and }m\neq 0\right)\text{ or }\left(y<0\text{ and }Denominator(\frac{2}{m})\text{bmod}2=1\text{ and }Numerator(m)\text{bmod}2=1\right)
Solve for m
\left\{\begin{matrix}m\neq 0\text{, }&x=1\text{ and }y=1\\m=\log_{\sqrt{x^{2}-1}+x}\left(y\right)\text{; }m=\log_{-\sqrt{x^{2}-1}+x}\left(y\right)\text{, }&y\neq 1\text{ and }y>0\text{ and }x>1\\m\in \mathrm{R}\text{, }&x=-1\text{ and }Denominator(m)\text{bmod}2=1\text{ and }Numerator(m)\text{bmod}2=1\text{ and }y=-1\end{matrix}\right.
Graph
Quiz
Linear Equation
5 problems similar to:
y ^ { \frac { 1 } { m } } + y ^ { - \frac { 1 } { m } } = 2 x
Share
Copied to clipboard
2x=y^{\frac{1}{m}}+y^{-\frac{1}{m}}
Swap sides so that all variable terms are on the left hand side.
\frac{2x}{2}=\frac{y^{\frac{1}{m}}+y^{-\frac{1}{m}}}{2}
Divide both sides by 2.
x=\frac{y^{\frac{1}{m}}+y^{-\frac{1}{m}}}{2}
Dividing by 2 undoes the multiplication by 2.
2x=y^{\frac{1}{m}}+y^{-\frac{1}{m}}
Swap sides so that all variable terms are on the left hand side.
\frac{2x}{2}=\frac{y^{\frac{1}{m}}+y^{-\frac{1}{m}}}{2}
Divide both sides by 2.
x=\frac{y^{\frac{1}{m}}+y^{-\frac{1}{m}}}{2}
Dividing by 2 undoes the multiplication by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}