Solve for m (complex solution)
\left\{\begin{matrix}m=-\frac{x^{4}-y}{2\left(1-x^{2}\right)}\text{, }&x\neq 1\text{ and }x\neq -1\\m\in \mathrm{C}\text{, }&\left(x=-1\text{ or }x=1\right)\text{ and }y=1\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=-\frac{x^{4}-y}{2\left(1-x^{2}\right)}\text{, }&|x|\neq 1\\m\in \mathrm{R}\text{, }&y=1\text{ and }|x|=1\end{matrix}\right.
Solve for x (complex solution)
x=\sqrt{-\sqrt{y+m^{2}-2m}+m}
x=-\sqrt{-\sqrt{y+m^{2}-2m}+m}
x=-\sqrt{\sqrt{y+m^{2}-2m}+m}
x=\sqrt{\sqrt{y+m^{2}-2m}+m}
Solve for x
\left\{\begin{matrix}x=-\sqrt{\sqrt{y+m^{2}-2m}+m}\text{; }x=\sqrt{\sqrt{y+m^{2}-2m}+m}\text{, }&\left(m>0\text{ and }y\geq 2m-m^{2}\right)\text{ or }\left(y=0\text{ and }m=0\right)\text{ or }\left(y>2m-m^{2}\text{ and }y\geq 2m\right)\\x=-\sqrt{-\sqrt{y+m^{2}-2m}+m}\text{; }x=\sqrt{-\sqrt{y+m^{2}-2m}+m}\text{, }&\left(m=0\text{ and }y=0\right)\text{ or }\left(m>0\text{ and }y\leq 2m\text{ and }y\geq 2m-m^{2}\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{4}-2mx^{2}+2m=y
Swap sides so that all variable terms are on the left hand side.
-2mx^{2}+2m=y-x^{4}
Subtract x^{4} from both sides.
\left(-2x^{2}+2\right)m=y-x^{4}
Combine all terms containing m.
\left(2-2x^{2}\right)m=y-x^{4}
The equation is in standard form.
\frac{\left(2-2x^{2}\right)m}{2-2x^{2}}=\frac{y-x^{4}}{2-2x^{2}}
Divide both sides by -2x^{2}+2.
m=\frac{y-x^{4}}{2-2x^{2}}
Dividing by -2x^{2}+2 undoes the multiplication by -2x^{2}+2.
m=\frac{y-x^{4}}{2\left(1-x^{2}\right)}
Divide y-x^{4} by -2x^{2}+2.
x^{4}-2mx^{2}+2m=y
Swap sides so that all variable terms are on the left hand side.
-2mx^{2}+2m=y-x^{4}
Subtract x^{4} from both sides.
\left(-2x^{2}+2\right)m=y-x^{4}
Combine all terms containing m.
\left(2-2x^{2}\right)m=y-x^{4}
The equation is in standard form.
\frac{\left(2-2x^{2}\right)m}{2-2x^{2}}=\frac{y-x^{4}}{2-2x^{2}}
Divide both sides by -2x^{2}+2.
m=\frac{y-x^{4}}{2-2x^{2}}
Dividing by -2x^{2}+2 undoes the multiplication by -2x^{2}+2.
m=\frac{y-x^{4}}{2\left(1-x^{2}\right)}
Divide y-x^{4} by -2x^{2}+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}