Solve for m (complex solution)
\left\{\begin{matrix}m=-\frac{x^{2}-y-1}{1-x}\text{, }&x\neq 1\\m\in \mathrm{C}\text{, }&y=0\text{ and }x=1\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=-\frac{x^{2}-y-1}{1-x}\text{, }&x\neq 1\\m\in \mathrm{R}\text{, }&y=0\text{ and }x=1\end{matrix}\right.
Solve for x (complex solution)
x=\frac{\sqrt{4y+m^{2}-4m+4}+m}{2}
x=\frac{-\sqrt{4y+m^{2}-4m+4}+m}{2}
Solve for x
x=\frac{\sqrt{4y+m^{2}-4m+4}+m}{2}
x=\frac{-\sqrt{4y+m^{2}-4m+4}+m}{2}\text{, }y\geq -\frac{\left(m-2\right)^{2}}{4}
Graph
Share
Copied to clipboard
x^{2}-mx+m-1=y
Swap sides so that all variable terms are on the left hand side.
-mx+m-1=y-x^{2}
Subtract x^{2} from both sides.
-mx+m=y-x^{2}+1
Add 1 to both sides.
\left(-x+1\right)m=y-x^{2}+1
Combine all terms containing m.
\left(1-x\right)m=1+y-x^{2}
The equation is in standard form.
\frac{\left(1-x\right)m}{1-x}=\frac{1+y-x^{2}}{1-x}
Divide both sides by -x+1.
m=\frac{1+y-x^{2}}{1-x}
Dividing by -x+1 undoes the multiplication by -x+1.
x^{2}-mx+m-1=y
Swap sides so that all variable terms are on the left hand side.
-mx+m-1=y-x^{2}
Subtract x^{2} from both sides.
-mx+m=y-x^{2}+1
Add 1 to both sides.
\left(-x+1\right)m=y-x^{2}+1
Combine all terms containing m.
\left(1-x\right)m=1+y-x^{2}
The equation is in standard form.
\frac{\left(1-x\right)m}{1-x}=\frac{1+y-x^{2}}{1-x}
Divide both sides by -x+1.
m=\frac{1+y-x^{2}}{1-x}
Dividing by -x+1 undoes the multiplication by -x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}