Skip to main content
Solve for g (complex solution)
Tick mark Image
Solve for g
Tick mark Image
Solve for t (complex solution)
Tick mark Image
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

v_{0}yt-\frac{1}{2}gt^{2}=y
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{2}gt^{2}=y-v_{0}yt
Subtract v_{0}yt from both sides.
\left(-\frac{t^{2}}{2}\right)g=y-tv_{0}y
The equation is in standard form.
\frac{\left(-\frac{t^{2}}{2}\right)g}{-\frac{t^{2}}{2}}=\frac{y-tv_{0}y}{-\frac{t^{2}}{2}}
Divide both sides by -\frac{1}{2}t^{2}.
g=\frac{y-tv_{0}y}{-\frac{t^{2}}{2}}
Dividing by -\frac{1}{2}t^{2} undoes the multiplication by -\frac{1}{2}t^{2}.
g=-\frac{2y\left(1-tv_{0}\right)}{t^{2}}
Divide y-yv_{0}t by -\frac{1}{2}t^{2}.
v_{0}yt-\frac{1}{2}gt^{2}=y
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{2}gt^{2}=y-v_{0}yt
Subtract v_{0}yt from both sides.
\left(-\frac{t^{2}}{2}\right)g=y-tv_{0}y
The equation is in standard form.
\frac{\left(-\frac{t^{2}}{2}\right)g}{-\frac{t^{2}}{2}}=\frac{y-tv_{0}y}{-\frac{t^{2}}{2}}
Divide both sides by -\frac{1}{2}t^{2}.
g=\frac{y-tv_{0}y}{-\frac{t^{2}}{2}}
Dividing by -\frac{1}{2}t^{2} undoes the multiplication by -\frac{1}{2}t^{2}.
g=-\frac{2y\left(1-tv_{0}\right)}{t^{2}}
Divide y-ytv_{0} by -\frac{1}{2}t^{2}.