Solve for t (complex solution)
\left\{\begin{matrix}t=-\frac{2x+y-4}{\left(2-x\right)\left(x+1\right)}\text{, }&x\neq -1\text{ and }x\neq 2\\t\in \mathrm{C}\text{, }&\left(y=0\text{ and }x=2\right)\text{ or }\left(y=6\text{ and }x=-1\right)\end{matrix}\right.
Solve for t
\left\{\begin{matrix}t=-\frac{2x+y-4}{\left(2-x\right)\left(x+1\right)}\text{, }&x\neq -1\text{ and }x\neq 2\\t\in \mathrm{R}\text{, }&\left(y=0\text{ and }x=2\right)\text{ or }\left(y=6\text{ and }x=-1\right)\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{\sqrt{4ty+9t^{2}-12t+4}-t-2}{2t}\text{; }x=\frac{\sqrt{4ty+9t^{2}-12t+4}+t+2}{2t}\text{, }&t\neq 0\\x=\frac{4-y}{2}\text{, }&t=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{\sqrt{4ty+9t^{2}-12t+4}-t-2}{2t}\text{; }x=\frac{\sqrt{4ty+9t^{2}-12t+4}+t+2}{2t}\text{, }&\left(t>0\text{ or }y\leq -\frac{\left(3t-2\right)^{2}}{4t}\right)\text{ and }\left(y\leq \text{Indeterminate}\text{ or }t\neq 0\right)\text{ and }\left(t<0\text{ or }\left(t\neq 0\text{ and }y\geq -\frac{\left(3t-2\right)^{2}}{4t}\right)\right)\\x=\frac{4-y}{2}\text{, }&t=0\end{matrix}\right.
Graph
Share
Copied to clipboard
y=tx^{2}-3tx+2t+\left(1-t\right)\left(-2x+4\right)
Use the distributive property to multiply t by x^{2}-3x+2.
y=tx^{2}-3tx+2t-2x+4+2tx-4t
Use the distributive property to multiply 1-t by -2x+4.
y=tx^{2}-tx+2t-2x+4-4t
Combine -3tx and 2tx to get -tx.
y=tx^{2}-tx-2t-2x+4
Combine 2t and -4t to get -2t.
tx^{2}-tx-2t-2x+4=y
Swap sides so that all variable terms are on the left hand side.
tx^{2}-tx-2t+4=y+2x
Add 2x to both sides.
tx^{2}-tx-2t=y+2x-4
Subtract 4 from both sides.
\left(x^{2}-x-2\right)t=y+2x-4
Combine all terms containing t.
\left(x^{2}-x-2\right)t=2x+y-4
The equation is in standard form.
\frac{\left(x^{2}-x-2\right)t}{x^{2}-x-2}=\frac{2x+y-4}{x^{2}-x-2}
Divide both sides by x^{2}-x-2.
t=\frac{2x+y-4}{x^{2}-x-2}
Dividing by x^{2}-x-2 undoes the multiplication by x^{2}-x-2.
t=\frac{2x+y-4}{\left(x-2\right)\left(x+1\right)}
Divide 2x+y-4 by x^{2}-x-2.
y=tx^{2}-3tx+2t+\left(1-t\right)\left(-2x+4\right)
Use the distributive property to multiply t by x^{2}-3x+2.
y=tx^{2}-3tx+2t-2x+4+2tx-4t
Use the distributive property to multiply 1-t by -2x+4.
y=tx^{2}-tx+2t-2x+4-4t
Combine -3tx and 2tx to get -tx.
y=tx^{2}-tx-2t-2x+4
Combine 2t and -4t to get -2t.
tx^{2}-tx-2t-2x+4=y
Swap sides so that all variable terms are on the left hand side.
tx^{2}-tx-2t+4=y+2x
Add 2x to both sides.
tx^{2}-tx-2t=y+2x-4
Subtract 4 from both sides.
\left(x^{2}-x-2\right)t=y+2x-4
Combine all terms containing t.
\left(x^{2}-x-2\right)t=2x+y-4
The equation is in standard form.
\frac{\left(x^{2}-x-2\right)t}{x^{2}-x-2}=\frac{2x+y-4}{x^{2}-x-2}
Divide both sides by x^{2}-x-2.
t=\frac{2x+y-4}{x^{2}-x-2}
Dividing by x^{2}-x-2 undoes the multiplication by x^{2}-x-2.
t=\frac{2x+y-4}{\left(x-2\right)\left(x+1\right)}
Divide 2x+y-4 by x^{2}-x-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}