Solve for p (complex solution)
\left\{\begin{matrix}p=-\frac{4-xy}{x\left(x-1\right)}\text{, }&x\neq 1\text{ and }x\neq 0\\p\in \mathrm{C}\text{, }&x=1\text{ and }y=4\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=-\frac{4-xy}{x\left(x-1\right)}\text{, }&x\neq 1\text{ and }x\neq 0\\p\in \mathrm{R}\text{, }&x=1\text{ and }y=4\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{\sqrt{y^{2}+2py+p^{2}-16p}-p-y}{2p}\text{; }x=\frac{\sqrt{y^{2}+2py+p^{2}-16p}+p+y}{2p}\text{, }&p\neq 0\\x=\frac{4}{y}\text{, }&p=0\text{ and }y\neq 0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{\sqrt{y^{2}+2py+p^{2}-16p}-p-y}{2p}\text{; }x=\frac{\sqrt{y^{2}+2py+p^{2}-16p}+p+y}{2p}\text{, }&p\neq 0\text{ and }\left(y\geq -p+4\sqrt{p}\text{ or }y\leq -p-4\sqrt{p}\text{ or }p<0\right)\\x=\frac{4}{y}\text{, }&p=0\text{ and }y\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
yx=p\left(x-1\right)x+4
Multiply both sides of the equation by x.
yx=\left(px-p\right)x+4
Use the distributive property to multiply p by x-1.
yx=px^{2}-px+4
Use the distributive property to multiply px-p by x.
px^{2}-px+4=yx
Swap sides so that all variable terms are on the left hand side.
px^{2}-px=yx-4
Subtract 4 from both sides.
\left(x^{2}-x\right)p=yx-4
Combine all terms containing p.
\left(x^{2}-x\right)p=xy-4
The equation is in standard form.
\frac{\left(x^{2}-x\right)p}{x^{2}-x}=\frac{xy-4}{x^{2}-x}
Divide both sides by x^{2}-x.
p=\frac{xy-4}{x^{2}-x}
Dividing by x^{2}-x undoes the multiplication by x^{2}-x.
p=\frac{xy-4}{x\left(x-1\right)}
Divide yx-4 by x^{2}-x.
yx=p\left(x-1\right)x+4
Multiply both sides of the equation by x.
yx=\left(px-p\right)x+4
Use the distributive property to multiply p by x-1.
yx=px^{2}-px+4
Use the distributive property to multiply px-p by x.
px^{2}-px+4=yx
Swap sides so that all variable terms are on the left hand side.
px^{2}-px=yx-4
Subtract 4 from both sides.
\left(x^{2}-x\right)p=yx-4
Combine all terms containing p.
\left(x^{2}-x\right)p=xy-4
The equation is in standard form.
\frac{\left(x^{2}-x\right)p}{x^{2}-x}=\frac{xy-4}{x^{2}-x}
Divide both sides by x^{2}-x.
p=\frac{xy-4}{x^{2}-x}
Dividing by x^{2}-x undoes the multiplication by x^{2}-x.
p=\frac{xy-4}{x\left(x-1\right)}
Divide yx-4 by x^{2}-x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}