y = e ^ { x } ( A \cos x + b \sin x
Solve for A
\left\{\begin{matrix}A=\frac{-b\sin(x)e^{x}+y}{\cos(x)e^{x}}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}\\A\in \mathrm{R}\text{, }&y=b\sin(x)e^{x}\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi \left(2n_{1}+1\right)}{2}\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=\frac{-A\cos(x)e^{x}+y}{\sin(x)e^{x}}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\\b\in \mathrm{R}\text{, }&y=A\cos(x)e^{x}\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\end{matrix}\right.
Graph
Share
Copied to clipboard
y=e^{x}A\cos(x)+e^{x}b\sin(x)
Use the distributive property to multiply e^{x} by A\cos(x)+b\sin(x).
e^{x}A\cos(x)+e^{x}b\sin(x)=y
Swap sides so that all variable terms are on the left hand side.
e^{x}A\cos(x)=y-e^{x}b\sin(x)
Subtract e^{x}b\sin(x) from both sides.
\cos(x)e^{x}A=-b\sin(x)e^{x}+y
The equation is in standard form.
\frac{\cos(x)e^{x}A}{\cos(x)e^{x}}=\frac{-b\sin(x)e^{x}+y}{\cos(x)e^{x}}
Divide both sides by e^{x}\cos(x).
A=\frac{-b\sin(x)e^{x}+y}{\cos(x)e^{x}}
Dividing by e^{x}\cos(x) undoes the multiplication by e^{x}\cos(x).
A=\frac{\frac{y}{e^{x}}-b\sin(x)}{\cos(x)}
Divide y-e^{x}b\sin(x) by e^{x}\cos(x).
y=e^{x}A\cos(x)+e^{x}b\sin(x)
Use the distributive property to multiply e^{x} by A\cos(x)+b\sin(x).
e^{x}A\cos(x)+e^{x}b\sin(x)=y
Swap sides so that all variable terms are on the left hand side.
e^{x}b\sin(x)=y-e^{x}A\cos(x)
Subtract e^{x}A\cos(x) from both sides.
\sin(x)e^{x}b=-A\cos(x)e^{x}+y
The equation is in standard form.
\frac{\sin(x)e^{x}b}{\sin(x)e^{x}}=\frac{-A\cos(x)e^{x}+y}{\sin(x)e^{x}}
Divide both sides by e^{x}\sin(x).
b=\frac{-A\cos(x)e^{x}+y}{\sin(x)e^{x}}
Dividing by e^{x}\sin(x) undoes the multiplication by e^{x}\sin(x).
b=\frac{\frac{y}{e^{x}}-A\cos(x)}{\sin(x)}
Divide y-e^{x}A\cos(x) by e^{x}\sin(x).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}