Skip to main content
Solve for c
Tick mark Image
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

y=e^{-\int 1\mathrm{d}x}\int e^{-x}e^{\int 1\mathrm{d}x}\mathrm{d}x+e^{-\int 1\mathrm{d}x}c
Use the distributive property to multiply e^{-\int 1\mathrm{d}x} by \int e^{-x}e^{\int 1\mathrm{d}x}\mathrm{d}x+c.
e^{-\int 1\mathrm{d}x}\int e^{-x}e^{\int 1\mathrm{d}x}\mathrm{d}x+e^{-\int 1\mathrm{d}x}c=y
Swap sides so that all variable terms are on the left hand side.
e^{-\int 1\mathrm{d}x}c=y-e^{-\int 1\mathrm{d}x}\int e^{-x}e^{\int 1\mathrm{d}x}\mathrm{d}x
Subtract e^{-\int 1\mathrm{d}x}\int e^{-x}e^{\int 1\mathrm{d}x}\mathrm{d}x from both sides.
ce^{-\int 1\mathrm{d}x}=-e^{-\int 1\mathrm{d}x}\int e^{-x}e^{\int 1\mathrm{d}x}\mathrm{d}x+y
Reorder the terms.
\frac{1}{e^{x+С}}c=-\frac{xe^{С}+С_{1}}{e^{x+С_{2}}}+y
The equation is in standard form.
\frac{\frac{1}{e^{x+С}}ce^{x+С}}{1}=\frac{-xe^{С_{1}}+ye^{x+С}-С_{2}}{e^{x+С_{3}}\times \frac{1}{e^{x+С}}}
Divide both sides by e^{-\left(x+С\right)}.
c=\frac{-xe^{С_{1}}+ye^{x+С}-С_{2}}{e^{x+С_{3}}\times \frac{1}{e^{x+С}}}
Dividing by e^{-\left(x+С\right)} undoes the multiplication by e^{-\left(x+С\right)}.
c=-xe^{С_{1}}+ye^{x+С}-С_{2}
Divide \frac{ye^{x+С}-e^{С}x-С}{e^{x+С}} by e^{-\left(x+С\right)}.