Solve for c
c=-xe^{С_{1}}+ye^{x+С}-С_{2}
Solve for y
y=\frac{xe^{С}+c+С_{1}}{e^{x+С_{2}}}
Share
Copied to clipboard
y=e^{-\int 1\mathrm{d}x}\int e^{-x}e^{\int 1\mathrm{d}x}\mathrm{d}x+e^{-\int 1\mathrm{d}x}c
Use the distributive property to multiply e^{-\int 1\mathrm{d}x} by \int e^{-x}e^{\int 1\mathrm{d}x}\mathrm{d}x+c.
e^{-\int 1\mathrm{d}x}\int e^{-x}e^{\int 1\mathrm{d}x}\mathrm{d}x+e^{-\int 1\mathrm{d}x}c=y
Swap sides so that all variable terms are on the left hand side.
e^{-\int 1\mathrm{d}x}c=y-e^{-\int 1\mathrm{d}x}\int e^{-x}e^{\int 1\mathrm{d}x}\mathrm{d}x
Subtract e^{-\int 1\mathrm{d}x}\int e^{-x}e^{\int 1\mathrm{d}x}\mathrm{d}x from both sides.
ce^{-\int 1\mathrm{d}x}=-e^{-\int 1\mathrm{d}x}\int e^{-x}e^{\int 1\mathrm{d}x}\mathrm{d}x+y
Reorder the terms.
\frac{1}{e^{x+С}}c=-\frac{xe^{С}+С_{1}}{e^{x+С_{2}}}+y
The equation is in standard form.
\frac{\frac{1}{e^{x+С}}ce^{x+С}}{1}=\frac{-xe^{С_{1}}+ye^{x+С}-С_{2}}{e^{x+С_{3}}\times \frac{1}{e^{x+С}}}
Divide both sides by e^{-\left(x+С\right)}.
c=\frac{-xe^{С_{1}}+ye^{x+С}-С_{2}}{e^{x+С_{3}}\times \frac{1}{e^{x+С}}}
Dividing by e^{-\left(x+С\right)} undoes the multiplication by e^{-\left(x+С\right)}.
c=-xe^{С_{1}}+ye^{x+С}-С_{2}
Divide \frac{ye^{x+С}-e^{С}x-С}{e^{x+С}} by e^{-\left(x+С\right)}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}