Skip to main content
Solve for c
Tick mark Image
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

y=e^{-\int 2\mathrm{d}x}c+e^{-\int 2\mathrm{d}x}\int \Phi _{1}e^{\int 2\mathrm{d}x}\mathrm{d}x
Use the distributive property to multiply e^{-\int 2\mathrm{d}x} by c+\int \Phi _{1}e^{\int 2\mathrm{d}x}\mathrm{d}x.
e^{-\int 2\mathrm{d}x}c+e^{-\int 2\mathrm{d}x}\int \Phi _{1}e^{\int 2\mathrm{d}x}\mathrm{d}x=y
Swap sides so that all variable terms are on the left hand side.
e^{-\int 2\mathrm{d}x}c=y-e^{-\int 2\mathrm{d}x}\int \Phi _{1}e^{\int 2\mathrm{d}x}\mathrm{d}x
Subtract e^{-\int 2\mathrm{d}x}\int \Phi _{1}e^{\int 2\mathrm{d}x}\mathrm{d}x from both sides.
ce^{-\int 2\mathrm{d}x}=-e^{-\int 2\mathrm{d}x}\int \Phi _{1}e^{\int 2\mathrm{d}x}\mathrm{d}x+y
Reorder the terms.
\frac{1}{e^{2x+С}}c=-\frac{С}{e^{2x+С_{1}}}-\frac{\Phi _{1}}{2}+y
The equation is in standard form.
\frac{\frac{1}{e^{2x+С}}ce^{2x+С}}{1}=\frac{2ye^{2x+С_{1}}-\Phi _{1}e^{2x+С}-2С_{2}}{2e^{2x+С_{3}}\times \frac{1}{e^{2x+С}}}
Divide both sides by e^{-\left(2x+С\right)}.
c=\frac{2ye^{2x+С_{1}}-\Phi _{1}e^{2x+С}-2С_{2}}{2e^{2x+С_{3}}\times \frac{1}{e^{2x+С}}}
Dividing by e^{-\left(2x+С\right)} undoes the multiplication by e^{-\left(2x+С\right)}.
c=-\frac{\Phi _{1}e^{2x+С}}{2}+ye^{2x+С_{1}}-С_{2}
Divide \frac{2ye^{2x+С}-2С-e^{2x+С}\Phi _{1}}{2e^{2x+С}} by e^{-\left(2x+С\right)}.