Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b
Tick mark Image
Graph

Similar Problems from Web Search

Share

axe^{x}\sin(2x)+bxe^{x}\cos(2x)=y
Swap sides so that all variable terms are on the left hand side.
axe^{x}\sin(2x)=y-bxe^{x}\cos(2x)
Subtract bxe^{x}\cos(2x) from both sides.
x\sin(2x)e^{x}a=-bx\cos(2x)e^{x}+y
The equation is in standard form.
\frac{x\sin(2x)e^{x}a}{x\sin(2x)e^{x}}=\frac{-bx\cos(2x)e^{x}+y}{x\sin(2x)e^{x}}
Divide both sides by xe^{x}\sin(2x).
a=\frac{-bx\cos(2x)e^{x}+y}{x\sin(2x)e^{x}}
Dividing by xe^{x}\sin(2x) undoes the multiplication by xe^{x}\sin(2x).
a=\frac{\frac{y}{xe^{x}}-b\cos(2x)}{\sin(2x)}
Divide y-bxe^{x}\cos(2x) by xe^{x}\sin(2x).
axe^{x}\sin(2x)+bxe^{x}\cos(2x)=y
Swap sides so that all variable terms are on the left hand side.
bxe^{x}\cos(2x)=y-axe^{x}\sin(2x)
Subtract axe^{x}\sin(2x) from both sides.
x\cos(2x)e^{x}b=-ax\sin(2x)e^{x}+y
The equation is in standard form.
\frac{x\cos(2x)e^{x}b}{x\cos(2x)e^{x}}=\frac{-ax\sin(2x)e^{x}+y}{x\cos(2x)e^{x}}
Divide both sides by xe^{x}\cos(2x).
b=\frac{-ax\sin(2x)e^{x}+y}{x\cos(2x)e^{x}}
Dividing by xe^{x}\cos(2x) undoes the multiplication by xe^{x}\cos(2x).
b=\frac{\frac{y}{xe^{x}}-a\sin(2x)}{\cos(2x)}
Divide y-axe^{x}\sin(2x) by xe^{x}\cos(2x).
axe^{x}\sin(2x)+bxe^{x}\cos(2x)=y
Swap sides so that all variable terms are on the left hand side.
axe^{x}\sin(2x)=y-bxe^{x}\cos(2x)
Subtract bxe^{x}\cos(2x) from both sides.
x\sin(2x)e^{x}a=-bx\cos(2x)e^{x}+y
The equation is in standard form.
\frac{x\sin(2x)e^{x}a}{x\sin(2x)e^{x}}=\frac{-bx\cos(2x)e^{x}+y}{x\sin(2x)e^{x}}
Divide both sides by xe^{x}\sin(2x).
a=\frac{-bx\cos(2x)e^{x}+y}{x\sin(2x)e^{x}}
Dividing by xe^{x}\sin(2x) undoes the multiplication by xe^{x}\sin(2x).
a=\frac{-bx\cos(2x)+\frac{y}{e^{x}}}{x\sin(2x)}
Divide y-bxe^{x}\cos(2x) by xe^{x}\sin(2x).
axe^{x}\sin(2x)+bxe^{x}\cos(2x)=y
Swap sides so that all variable terms are on the left hand side.
bxe^{x}\cos(2x)=y-axe^{x}\sin(2x)
Subtract axe^{x}\sin(2x) from both sides.
x\cos(2x)e^{x}b=-ax\sin(2x)e^{x}+y
The equation is in standard form.
\frac{x\cos(2x)e^{x}b}{x\cos(2x)e^{x}}=\frac{-ax\sin(2x)e^{x}+y}{x\cos(2x)e^{x}}
Divide both sides by xe^{x}\cos(2x).
b=\frac{-ax\sin(2x)e^{x}+y}{x\cos(2x)e^{x}}
Dividing by xe^{x}\cos(2x) undoes the multiplication by xe^{x}\cos(2x).
b=\frac{-ax\sin(2x)+\frac{y}{e^{x}}}{x\cos(2x)}
Divide y-axe^{x}\sin(2x) by xe^{x}\cos(2x).