Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{bxe^{\left(1-2i\right)x}+bxe^{\left(1+2i\right)x}-2y}{x\left(ie^{\left(1-2i\right)x}-ie^{\left(1+2i\right)x}\right)}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{2}\\a\in \mathrm{C}\text{, }&y=\frac{bx\left(e^{\left(1-2i\right)x}+e^{\left(1+2i\right)x}\right)}{2}\text{ and }\left(\left(y=\frac{bx\left(e^{\left(1-2i\right)x}+e^{\left(1+2i\right)x}\right)}{2}\text{ and }ixe^{\left(1-2i\right)x}-ixe^{\left(1+2i\right)x}=0\right)\text{ or }\exists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{2}\right)\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{iaxe^{\left(1-2i\right)x}-iaxe^{\left(1+2i\right)x}-2y}{x\left(e^{\left(1-2i\right)x}+e^{\left(1+2i\right)x}\right)}\text{, }&x\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{2}+\frac{\pi }{4}\text{ and }xe^{\left(1-2i\right)x}+xe^{\left(1+2i\right)x}\neq 0\\b\in \mathrm{C}\text{, }&\left(y=0\text{ and }x=0\right)\text{ or }\left(y=\frac{ax\left(ie^{\left(1-2i\right)x}-ie^{\left(1+2i\right)x}\right)}{2}\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{2}+\frac{\pi }{4}\right)\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{bx\cos(2x)e^{x}-y}{x\sin(2x)e^{x}}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{2}\\a\in \mathrm{R}\text{, }&y=bx\left(\cos(x)-\sin(x)\right)\left(\sin(x)+\cos(x)\right)e^{x}\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{2}\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{ax\sin(2x)e^{x}-y}{x\cos(2x)e^{x}}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{2}+\frac{\pi }{4}\text{ and }x\neq 0\\b\in \mathrm{R}\text{, }&\left(y=0\text{ and }x=0\right)\text{ or }\left(y=ax\sin(2x)e^{x}\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi \left(2n_{1}+1\right)}{4}\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
axe^{x}\sin(2x)+bxe^{x}\cos(2x)=y
Swap sides so that all variable terms are on the left hand side.
axe^{x}\sin(2x)=y-bxe^{x}\cos(2x)
Subtract bxe^{x}\cos(2x) from both sides.
x\sin(2x)e^{x}a=-bx\cos(2x)e^{x}+y
The equation is in standard form.
\frac{x\sin(2x)e^{x}a}{x\sin(2x)e^{x}}=\frac{-bx\cos(2x)e^{x}+y}{x\sin(2x)e^{x}}
Divide both sides by xe^{x}\sin(2x).
a=\frac{-bx\cos(2x)e^{x}+y}{x\sin(2x)e^{x}}
Dividing by xe^{x}\sin(2x) undoes the multiplication by xe^{x}\sin(2x).
a=\frac{\frac{y}{xe^{x}}-b\cos(2x)}{\sin(2x)}
Divide y-bxe^{x}\cos(2x) by xe^{x}\sin(2x).
axe^{x}\sin(2x)+bxe^{x}\cos(2x)=y
Swap sides so that all variable terms are on the left hand side.
bxe^{x}\cos(2x)=y-axe^{x}\sin(2x)
Subtract axe^{x}\sin(2x) from both sides.
x\cos(2x)e^{x}b=-ax\sin(2x)e^{x}+y
The equation is in standard form.
\frac{x\cos(2x)e^{x}b}{x\cos(2x)e^{x}}=\frac{-ax\sin(2x)e^{x}+y}{x\cos(2x)e^{x}}
Divide both sides by xe^{x}\cos(2x).
b=\frac{-ax\sin(2x)e^{x}+y}{x\cos(2x)e^{x}}
Dividing by xe^{x}\cos(2x) undoes the multiplication by xe^{x}\cos(2x).
b=\frac{\frac{y}{xe^{x}}-a\sin(2x)}{\cos(2x)}
Divide y-axe^{x}\sin(2x) by xe^{x}\cos(2x).
axe^{x}\sin(2x)+bxe^{x}\cos(2x)=y
Swap sides so that all variable terms are on the left hand side.
axe^{x}\sin(2x)=y-bxe^{x}\cos(2x)
Subtract bxe^{x}\cos(2x) from both sides.
x\sin(2x)e^{x}a=-bx\cos(2x)e^{x}+y
The equation is in standard form.
\frac{x\sin(2x)e^{x}a}{x\sin(2x)e^{x}}=\frac{-bx\cos(2x)e^{x}+y}{x\sin(2x)e^{x}}
Divide both sides by xe^{x}\sin(2x).
a=\frac{-bx\cos(2x)e^{x}+y}{x\sin(2x)e^{x}}
Dividing by xe^{x}\sin(2x) undoes the multiplication by xe^{x}\sin(2x).
a=\frac{-bx\cos(2x)+\frac{y}{e^{x}}}{x\sin(2x)}
Divide y-bxe^{x}\cos(2x) by xe^{x}\sin(2x).
axe^{x}\sin(2x)+bxe^{x}\cos(2x)=y
Swap sides so that all variable terms are on the left hand side.
bxe^{x}\cos(2x)=y-axe^{x}\sin(2x)
Subtract axe^{x}\sin(2x) from both sides.
x\cos(2x)e^{x}b=-ax\sin(2x)e^{x}+y
The equation is in standard form.
\frac{x\cos(2x)e^{x}b}{x\cos(2x)e^{x}}=\frac{-ax\sin(2x)e^{x}+y}{x\cos(2x)e^{x}}
Divide both sides by xe^{x}\cos(2x).
b=\frac{-ax\sin(2x)e^{x}+y}{x\cos(2x)e^{x}}
Dividing by xe^{x}\cos(2x) undoes the multiplication by xe^{x}\cos(2x).
b=\frac{-ax\sin(2x)+\frac{y}{e^{x}}}{x\cos(2x)}
Divide y-axe^{x}\sin(2x) by xe^{x}\cos(2x).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}