Solve for a
\left\{\begin{matrix}a=\frac{y}{r_{c}\sin(x)}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\text{ and }r_{c}\neq 0\\a\in \mathrm{R}\text{, }&\left(r_{c}=0\text{ or }\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\right)\text{ and }y=0\end{matrix}\right.
Solve for r_c
\left\{\begin{matrix}r_{c}=\frac{y}{a\sin(x)}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\text{ and }a\neq 0\\r_{c}\in \mathrm{R}\text{, }&\left(a=0\text{ or }\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\right)\text{ and }y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
ar_{c}\sin(x)=y
Swap sides so that all variable terms are on the left hand side.
r_{c}\sin(x)a=y
The equation is in standard form.
\frac{r_{c}\sin(x)a}{r_{c}\sin(x)}=\frac{y}{r_{c}\sin(x)}
Divide both sides by r_{c}\sin(x).
a=\frac{y}{r_{c}\sin(x)}
Dividing by r_{c}\sin(x) undoes the multiplication by r_{c}\sin(x).
ar_{c}\sin(x)=y
Swap sides so that all variable terms are on the left hand side.
a\sin(x)r_{c}=y
The equation is in standard form.
\frac{a\sin(x)r_{c}}{a\sin(x)}=\frac{y}{a\sin(x)}
Divide both sides by a\sin(x).
r_{c}=\frac{y}{a\sin(x)}
Dividing by a\sin(x) undoes the multiplication by a\sin(x).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}