Solve for a
a=\frac{y}{e^{kx}}
Solve for k
\left\{\begin{matrix}k=\frac{\ln(\frac{y}{a})}{x}\text{, }&\left(x\neq 0\text{ and }y>0\text{ and }a>0\right)\text{ or }\left(x\neq 0\text{ and }y<0\text{ and }a<0\right)\\k\in \mathrm{R}\text{, }&\left(y=0\text{ and }a=0\right)\text{ or }\left(a=y\text{ and }x=0\text{ and }y\neq 0\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
ae^{kx}=y
Swap sides so that all variable terms are on the left hand side.
e^{kx}a=y
The equation is in standard form.
\frac{e^{kx}a}{e^{kx}}=\frac{y}{e^{kx}}
Divide both sides by e^{kx}.
a=\frac{y}{e^{kx}}
Dividing by e^{kx} undoes the multiplication by e^{kx}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}