Solve for a
a=\frac{ye^{5x}-5}{e^{10x}}
Solve for x
\left\{\begin{matrix}x=\frac{5\ln(-\sqrt[5]{\frac{-\sqrt{y^{2}-20a}-y}{a}})-\ln(2)}{5}\text{, }&a\leq \frac{y^{2}}{20}\text{ and }a>0\text{ and }y\geq 2\sqrt{5a}\\x=\frac{5\ln(-\sqrt[5]{\frac{\sqrt{y^{2}-20a}-y}{a}})-\ln(2)}{5}\text{, }&\left(y=2\sqrt{5a}\text{ and }a>0\right)\text{ or }\left(y\geq 2\sqrt{5a}\text{ and }a\leq \frac{y^{2}}{20}\text{ and }a>0\right)\text{ or }a<0\\x=\frac{-\ln(y)+\ln(5)}{5}\text{, }&y>0\text{ and }a=0\end{matrix}\right.
Graph
Share
Copied to clipboard
ae^{5x}+5e^{-5x}=y
Swap sides so that all variable terms are on the left hand side.
ae^{5x}=y-5e^{-5x}
Subtract 5e^{-5x} from both sides.
e^{5x}a=-\frac{5}{e^{5x}}+y
The equation is in standard form.
\frac{e^{5x}a}{e^{5x}}=\frac{-\frac{5}{e^{5x}}+y}{e^{5x}}
Divide both sides by e^{5x}.
a=\frac{-\frac{5}{e^{5x}}+y}{e^{5x}}
Dividing by e^{5x} undoes the multiplication by e^{5x}.
a=\frac{ye^{5x}-5}{e^{10x}}
Divide y-\frac{5}{e^{5x}} by e^{5x}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}