Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{c-y}{\left(x-b\right)^{3}}\text{, }&x\neq b\\a\in \mathrm{C}\text{, }&y=c\text{ and }x=b\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{c-y}{\left(x-b\right)^{3}}\text{, }&x\neq b\\a\in \mathrm{R}\text{, }&y=c\text{ and }x=b\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=x+e^{\frac{4\pi i}{3}}a^{-\frac{1}{3}}\sqrt[3]{c-y}\text{; }b=x+a^{-\frac{1}{3}}\sqrt[3]{c-y}\text{; }b=x+e^{\frac{2\pi i}{3}}a^{-\frac{1}{3}}\sqrt[3]{c-y}\text{, }&a\neq 0\\b\in \mathrm{C}\text{, }&y=c\text{ and }a=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=\frac{\sqrt[3]{a}x+\sqrt[3]{c-y}}{\sqrt[3]{a}}\text{, }&a\neq 0\\b\in \mathrm{R}\text{, }&y=c\text{ and }a=0\end{matrix}\right.
Graph
Share
Copied to clipboard
y=a\left(x^{3}-3x^{2}b+3xb^{2}-b^{3}\right)+c
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(x-b\right)^{3}.
y=ax^{3}-3ax^{2}b+3axb^{2}-ab^{3}+c
Use the distributive property to multiply a by x^{3}-3x^{2}b+3xb^{2}-b^{3}.
ax^{3}-3ax^{2}b+3axb^{2}-ab^{3}+c=y
Swap sides so that all variable terms are on the left hand side.
ax^{3}-3ax^{2}b+3axb^{2}-ab^{3}=y-c
Subtract c from both sides.
\left(x^{3}-3x^{2}b+3xb^{2}-b^{3}\right)a=y-c
Combine all terms containing a.
\left(x^{3}-3bx^{2}+3xb^{2}-b^{3}\right)a=y-c
The equation is in standard form.
\frac{\left(x^{3}-3bx^{2}+3xb^{2}-b^{3}\right)a}{x^{3}-3bx^{2}+3xb^{2}-b^{3}}=\frac{y-c}{x^{3}-3bx^{2}+3xb^{2}-b^{3}}
Divide both sides by x^{3}-3x^{2}b+3xb^{2}-b^{3}.
a=\frac{y-c}{x^{3}-3bx^{2}+3xb^{2}-b^{3}}
Dividing by x^{3}-3x^{2}b+3xb^{2}-b^{3} undoes the multiplication by x^{3}-3x^{2}b+3xb^{2}-b^{3}.
a=\frac{y-c}{\left(x-b\right)^{3}}
Divide y-c by x^{3}-3x^{2}b+3xb^{2}-b^{3}.
y=a\left(x^{3}-3x^{2}b+3xb^{2}-b^{3}\right)+c
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(x-b\right)^{3}.
y=ax^{3}-3ax^{2}b+3axb^{2}-ab^{3}+c
Use the distributive property to multiply a by x^{3}-3x^{2}b+3xb^{2}-b^{3}.
ax^{3}-3ax^{2}b+3axb^{2}-ab^{3}+c=y
Swap sides so that all variable terms are on the left hand side.
ax^{3}-3ax^{2}b+3axb^{2}-ab^{3}=y-c
Subtract c from both sides.
\left(x^{3}-3x^{2}b+3xb^{2}-b^{3}\right)a=y-c
Combine all terms containing a.
\left(x^{3}-3bx^{2}+3xb^{2}-b^{3}\right)a=y-c
The equation is in standard form.
\frac{\left(x^{3}-3bx^{2}+3xb^{2}-b^{3}\right)a}{x^{3}-3bx^{2}+3xb^{2}-b^{3}}=\frac{y-c}{x^{3}-3bx^{2}+3xb^{2}-b^{3}}
Divide both sides by x^{3}-3x^{2}b+3xb^{2}-b^{3}.
a=\frac{y-c}{x^{3}-3bx^{2}+3xb^{2}-b^{3}}
Dividing by x^{3}-3x^{2}b+3xb^{2}-b^{3} undoes the multiplication by x^{3}-3x^{2}b+3xb^{2}-b^{3}.
a=\frac{y-c}{\left(x-b\right)^{3}}
Divide y-c by x^{3}-3x^{2}b+3xb^{2}-b^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}