Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y=a\left(1+2\cos(\theta )+\left(\cos(\theta )\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\cos(\theta )\right)^{2}.
y=a+2a\cos(\theta )+a\left(\cos(\theta )\right)^{2}
Use the distributive property to multiply a by 1+2\cos(\theta )+\left(\cos(\theta )\right)^{2}.
a+2a\cos(\theta )+a\left(\cos(\theta )\right)^{2}=y
Swap sides so that all variable terms are on the left hand side.
\left(1+2\cos(\theta )+\left(\cos(\theta )\right)^{2}\right)a=y
Combine all terms containing a.
\left(\left(\cos(\theta )\right)^{2}+2\cos(\theta )+1\right)a=y
The equation is in standard form.
\frac{\left(\left(\cos(\theta )\right)^{2}+2\cos(\theta )+1\right)a}{\left(\cos(\theta )\right)^{2}+2\cos(\theta )+1}=\frac{y}{\left(\cos(\theta )\right)^{2}+2\cos(\theta )+1}
Divide both sides by 1+2\cos(\theta )+\left(\cos(\theta )\right)^{2}.
a=\frac{y}{\left(\cos(\theta )\right)^{2}+2\cos(\theta )+1}
Dividing by 1+2\cos(\theta )+\left(\cos(\theta )\right)^{2} undoes the multiplication by 1+2\cos(\theta )+\left(\cos(\theta )\right)^{2}.
a=\frac{y}{\left(\cos(\theta )+1\right)^{2}}
Divide y by 1+2\cos(\theta )+\left(\cos(\theta )\right)^{2}.
y=a\left(1+2\cos(\theta )+\left(\cos(\theta )\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\cos(\theta )\right)^{2}.
y=a+2a\cos(\theta )+a\left(\cos(\theta )\right)^{2}
Use the distributive property to multiply a by 1+2\cos(\theta )+\left(\cos(\theta )\right)^{2}.
a+2a\cos(\theta )+a\left(\cos(\theta )\right)^{2}=y
Swap sides so that all variable terms are on the left hand side.
\left(1+2\cos(\theta )+\left(\cos(\theta )\right)^{2}\right)a=y
Combine all terms containing a.
\left(\left(\cos(\theta )\right)^{2}+2\cos(\theta )+1\right)a=y
The equation is in standard form.
\frac{\left(\left(\cos(\theta )\right)^{2}+2\cos(\theta )+1\right)a}{\left(\cos(\theta )\right)^{2}+2\cos(\theta )+1}=\frac{y}{\left(\cos(\theta )\right)^{2}+2\cos(\theta )+1}
Divide both sides by 1+2\cos(\theta )+\left(\cos(\theta )\right)^{2}.
a=\frac{y}{\left(\cos(\theta )\right)^{2}+2\cos(\theta )+1}
Dividing by 1+2\cos(\theta )+\left(\cos(\theta )\right)^{2} undoes the multiplication by 1+2\cos(\theta )+\left(\cos(\theta )\right)^{2}.
a=\frac{y}{\left(\cos(\theta )+1\right)^{2}}
Divide y by 1+2\cos(\theta )+\left(\cos(\theta )\right)^{2}.