Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{y}{\left(\cos(\theta )+1\right)^{2}}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =2\pi n_{1}+\pi \\a\in \mathrm{C}\text{, }&y=0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\theta =2\pi n_{1}+\pi \end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{y}{\left(\cos(\theta )+1\right)^{2}}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =2\pi n_{1}+\pi \\a\in \mathrm{R}\text{, }&y=0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\theta =2\pi n_{1}+\pi \end{matrix}\right.
Solve for y
y=a\left(\cos(\theta )+1\right)^{2}
Graph
Share
Copied to clipboard
y=a\left(1+2\cos(\theta )+\left(\cos(\theta )\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\cos(\theta )\right)^{2}.
y=a+2a\cos(\theta )+a\left(\cos(\theta )\right)^{2}
Use the distributive property to multiply a by 1+2\cos(\theta )+\left(\cos(\theta )\right)^{2}.
a+2a\cos(\theta )+a\left(\cos(\theta )\right)^{2}=y
Swap sides so that all variable terms are on the left hand side.
\left(1+2\cos(\theta )+\left(\cos(\theta )\right)^{2}\right)a=y
Combine all terms containing a.
\left(\left(\cos(\theta )\right)^{2}+2\cos(\theta )+1\right)a=y
The equation is in standard form.
\frac{\left(\left(\cos(\theta )\right)^{2}+2\cos(\theta )+1\right)a}{\left(\cos(\theta )\right)^{2}+2\cos(\theta )+1}=\frac{y}{\left(\cos(\theta )\right)^{2}+2\cos(\theta )+1}
Divide both sides by 1+2\cos(\theta )+\left(\cos(\theta )\right)^{2}.
a=\frac{y}{\left(\cos(\theta )\right)^{2}+2\cos(\theta )+1}
Dividing by 1+2\cos(\theta )+\left(\cos(\theta )\right)^{2} undoes the multiplication by 1+2\cos(\theta )+\left(\cos(\theta )\right)^{2}.
a=\frac{y}{\left(\cos(\theta )+1\right)^{2}}
Divide y by 1+2\cos(\theta )+\left(\cos(\theta )\right)^{2}.
y=a\left(1+2\cos(\theta )+\left(\cos(\theta )\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\cos(\theta )\right)^{2}.
y=a+2a\cos(\theta )+a\left(\cos(\theta )\right)^{2}
Use the distributive property to multiply a by 1+2\cos(\theta )+\left(\cos(\theta )\right)^{2}.
a+2a\cos(\theta )+a\left(\cos(\theta )\right)^{2}=y
Swap sides so that all variable terms are on the left hand side.
\left(1+2\cos(\theta )+\left(\cos(\theta )\right)^{2}\right)a=y
Combine all terms containing a.
\left(\left(\cos(\theta )\right)^{2}+2\cos(\theta )+1\right)a=y
The equation is in standard form.
\frac{\left(\left(\cos(\theta )\right)^{2}+2\cos(\theta )+1\right)a}{\left(\cos(\theta )\right)^{2}+2\cos(\theta )+1}=\frac{y}{\left(\cos(\theta )\right)^{2}+2\cos(\theta )+1}
Divide both sides by 1+2\cos(\theta )+\left(\cos(\theta )\right)^{2}.
a=\frac{y}{\left(\cos(\theta )\right)^{2}+2\cos(\theta )+1}
Dividing by 1+2\cos(\theta )+\left(\cos(\theta )\right)^{2} undoes the multiplication by 1+2\cos(\theta )+\left(\cos(\theta )\right)^{2}.
a=\frac{y}{\left(\cos(\theta )+1\right)^{2}}
Divide y by 1+2\cos(\theta )+\left(\cos(\theta )\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}