Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{5-y}{\sin(3x)}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{3}\\a\in \mathrm{C}\text{, }&y=5\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{3}\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{5-y}{\sin(3x)}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{3}\\a\in \mathrm{R}\text{, }&y=5\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{3}\end{matrix}\right.
Graph
Share
Copied to clipboard
a\sin(3x)+5=y
Swap sides so that all variable terms are on the left hand side.
a\sin(3x)=y-5
Subtract 5 from both sides.
\sin(3x)a=y-5
The equation is in standard form.
\frac{\sin(3x)a}{\sin(3x)}=\frac{y-5}{\sin(3x)}
Divide both sides by \sin(3x).
a=\frac{y-5}{\sin(3x)}
Dividing by \sin(3x) undoes the multiplication by \sin(3x).
a\sin(3x)+5=y
Swap sides so that all variable terms are on the left hand side.
a\sin(3x)=y-5
Subtract 5 from both sides.
\sin(3x)a=y-5
The equation is in standard form.
\frac{\sin(3x)a}{\sin(3x)}=\frac{y-5}{\sin(3x)}
Divide both sides by \sin(3x).
a=\frac{y-5}{\sin(3x)}
Dividing by \sin(3x) undoes the multiplication by \sin(3x).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}