Solve for b (complex solution)
b=-y+a^{x}-1
Solve for b
b=-y+a^{x}-1
\left(a<0\text{ and }Denominator(x)\text{bmod}2=1\right)\text{ or }\left(a=0\text{ and }x>0\right)\text{ or }a>0
Solve for a (complex solution)
a=e^{\frac{Im(x)arg(y+b+1)+iRe(x)arg(y+b+1)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}-\frac{2iRe(x)\pi n_{1}}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}-\frac{2\pi n_{1}Im(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}\left(|y+b+1|\right)^{\frac{Re(x)-iIm(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
y=a^{x}-b-1
To find the opposite of b+1, find the opposite of each term.
a^{x}-b-1=y
Swap sides so that all variable terms are on the left hand side.
-b-1=y-a^{x}
Subtract a^{x} from both sides.
-b=y-a^{x}+1
Add 1 to both sides.
\frac{-b}{-1}=\frac{y-a^{x}+1}{-1}
Divide both sides by -1.
b=\frac{y-a^{x}+1}{-1}
Dividing by -1 undoes the multiplication by -1.
b=-y+a^{x}-1
Divide y-a^{x}+1 by -1.
y=a^{x}-b-1
To find the opposite of b+1, find the opposite of each term.
a^{x}-b-1=y
Swap sides so that all variable terms are on the left hand side.
-b-1=y-a^{x}
Subtract a^{x} from both sides.
-b=y-a^{x}+1
Add 1 to both sides.
\frac{-b}{-1}=\frac{y-a^{x}+1}{-1}
Divide both sides by -1.
b=\frac{y-a^{x}+1}{-1}
Dividing by -1 undoes the multiplication by -1.
b=-y+a^{x}-1
Divide y-a^{x}+1 by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}