Solve for P (complex solution)
\left\{\begin{matrix}P=\frac{y}{\left(r+1\right)^{2}}\text{, }&r\neq -1\\P\in \mathrm{C}\text{, }&y=0\text{ and }r=-1\end{matrix}\right.
Solve for P
\left\{\begin{matrix}P=\frac{y}{\left(r+1\right)^{2}}\text{, }&r\neq -1\\P\in \mathrm{R}\text{, }&y=0\text{ and }r=-1\end{matrix}\right.
Solve for r (complex solution)
\left\{\begin{matrix}r=-1+P^{-\frac{1}{2}}\sqrt{y}\text{; }r=-1-P^{-\frac{1}{2}}\sqrt{y}\text{, }&P\neq 0\\r\in \mathrm{C}\text{, }&y=0\text{ and }P=0\end{matrix}\right.
Solve for r
\left\{\begin{matrix}r=-\sqrt{\frac{y}{P}}-1\text{; }r=\sqrt{\frac{y}{P}}-1\text{, }&y\leq 0\text{ and }P<0\\r=-\sqrt{\frac{y}{P}}-1\text{; }r=\sqrt{\frac{y}{P}}-1\text{, }&y\geq 0\text{ and }P>0\\r\in \mathrm{R}\text{, }&y=0\text{ and }P=0\end{matrix}\right.
Graph
Share
Copied to clipboard
y=P\left(1+2r+r^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+r\right)^{2}.
y=P+2Pr+Pr^{2}
Use the distributive property to multiply P by 1+2r+r^{2}.
P+2Pr+Pr^{2}=y
Swap sides so that all variable terms are on the left hand side.
\left(1+2r+r^{2}\right)P=y
Combine all terms containing P.
\left(r^{2}+2r+1\right)P=y
The equation is in standard form.
\frac{\left(r^{2}+2r+1\right)P}{r^{2}+2r+1}=\frac{y}{r^{2}+2r+1}
Divide both sides by 1+2r+r^{2}.
P=\frac{y}{r^{2}+2r+1}
Dividing by 1+2r+r^{2} undoes the multiplication by 1+2r+r^{2}.
P=\frac{y}{\left(r+1\right)^{2}}
Divide y by 1+2r+r^{2}.
y=P\left(1+2r+r^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+r\right)^{2}.
y=P+2Pr+Pr^{2}
Use the distributive property to multiply P by 1+2r+r^{2}.
P+2Pr+Pr^{2}=y
Swap sides so that all variable terms are on the left hand side.
\left(1+2r+r^{2}\right)P=y
Combine all terms containing P.
\left(r^{2}+2r+1\right)P=y
The equation is in standard form.
\frac{\left(r^{2}+2r+1\right)P}{r^{2}+2r+1}=\frac{y}{r^{2}+2r+1}
Divide both sides by 1+2r+r^{2}.
P=\frac{y}{r^{2}+2r+1}
Dividing by 1+2r+r^{2} undoes the multiplication by 1+2r+r^{2}.
P=\frac{y}{\left(r+1\right)^{2}}
Divide y by 1+2r+r^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}