Skip to main content
Solve for E (complex solution)
Tick mark Image
Solve for E
Tick mark Image
Graph

Similar Problems from Web Search

Share

y=E-Ec^{\frac{-t}{4}}
Use the distributive property to multiply E by 1-c^{\frac{-t}{4}}.
E-Ec^{\frac{-t}{4}}=y
Swap sides so that all variable terms are on the left hand side.
-Ec^{-\frac{t}{4}}+E=y
Reorder the terms.
\left(-c^{-\frac{t}{4}}+1\right)E=y
Combine all terms containing E.
\left(1-c^{-\frac{t}{4}}\right)E=y
The equation is in standard form.
\frac{\left(1-c^{-\frac{t}{4}}\right)E}{1-c^{-\frac{t}{4}}}=\frac{y}{1-c^{-\frac{t}{4}}}
Divide both sides by -c^{-\frac{1}{4}t}+1.
E=\frac{y}{1-c^{-\frac{t}{4}}}
Dividing by -c^{-\frac{1}{4}t}+1 undoes the multiplication by -c^{-\frac{1}{4}t}+1.
E=\frac{yc^{\frac{t}{4}}}{c^{\frac{t}{4}}-1}
Divide y by -c^{-\frac{1}{4}t}+1.
y=E-Ec^{\frac{-t}{4}}
Use the distributive property to multiply E by 1-c^{\frac{-t}{4}}.
E-Ec^{\frac{-t}{4}}=y
Swap sides so that all variable terms are on the left hand side.
-Ec^{-\frac{t}{4}}+E=y
Reorder the terms.
\left(-c^{-\frac{t}{4}}+1\right)E=y
Combine all terms containing E.
\left(1-c^{-\frac{t}{4}}\right)E=y
The equation is in standard form.
\frac{\left(1-c^{-\frac{t}{4}}\right)E}{1-c^{-\frac{t}{4}}}=\frac{y}{1-c^{-\frac{t}{4}}}
Divide both sides by -c^{-\frac{1}{4}t}+1.
E=\frac{y}{1-c^{-\frac{t}{4}}}
Dividing by -c^{-\frac{1}{4}t}+1 undoes the multiplication by -c^{-\frac{1}{4}t}+1.
E=\frac{yc^{\frac{t}{4}}}{c^{\frac{t}{4}}-1}
Divide y by -c^{-\frac{1}{4}t}+1.