Solve for A
\left\{\begin{matrix}A=-\frac{B\sqrt{x^{2}+1}-y}{x}\text{, }&x\neq 0\\A\in \mathrm{R}\text{, }&y=B\text{ and }x=0\end{matrix}\right.
Solve for B
B=-\frac{Ax-y}{\sqrt{x^{2}+1}}
Graph
Share
Copied to clipboard
Ax+B\sqrt{1+x^{2}}=y
Swap sides so that all variable terms are on the left hand side.
Ax=y-B\sqrt{1+x^{2}}
Subtract B\sqrt{1+x^{2}} from both sides.
Ax=-B\sqrt{x^{2}+1}+y
Reorder the terms.
xA=-B\sqrt{x^{2}+1}+y
The equation is in standard form.
\frac{xA}{x}=\frac{-B\sqrt{x^{2}+1}+y}{x}
Divide both sides by x.
A=\frac{-B\sqrt{x^{2}+1}+y}{x}
Dividing by x undoes the multiplication by x.
Ax+B\sqrt{1+x^{2}}=y
Swap sides so that all variable terms are on the left hand side.
B\sqrt{1+x^{2}}=y-Ax
Subtract Ax from both sides.
\sqrt{x^{2}+1}B=y-Ax
The equation is in standard form.
\frac{\sqrt{x^{2}+1}B}{\sqrt{x^{2}+1}}=\frac{y-Ax}{\sqrt{x^{2}+1}}
Divide both sides by \sqrt{1+x^{2}}.
B=\frac{y-Ax}{\sqrt{x^{2}+1}}
Dividing by \sqrt{1+x^{2}} undoes the multiplication by \sqrt{1+x^{2}}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}