Solve for A
A=y-\frac{B}{x}-\frac{C}{x^{2}}
x\neq 0
Solve for B
B=xy-Ax-\frac{C}{x}
x\neq 0
Graph
Share
Copied to clipboard
yx^{2}=x^{2}A+xB+C
Multiply both sides of the equation by x^{2}, the least common multiple of x,x^{2}.
x^{2}A+xB+C=yx^{2}
Swap sides so that all variable terms are on the left hand side.
x^{2}A+C=yx^{2}-xB
Subtract xB from both sides.
x^{2}A=yx^{2}-xB-C
Subtract C from both sides.
x^{2}A=yx^{2}-Bx-C
The equation is in standard form.
\frac{x^{2}A}{x^{2}}=\frac{yx^{2}-Bx-C}{x^{2}}
Divide both sides by x^{2}.
A=\frac{yx^{2}-Bx-C}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
A=-\frac{Bx+C}{x^{2}}+y
Divide yx^{2}-xB-C by x^{2}.
yx^{2}=x^{2}A+xB+C
Multiply both sides of the equation by x^{2}, the least common multiple of x,x^{2}.
x^{2}A+xB+C=yx^{2}
Swap sides so that all variable terms are on the left hand side.
xB+C=yx^{2}-x^{2}A
Subtract x^{2}A from both sides.
xB=yx^{2}-x^{2}A-C
Subtract C from both sides.
Bx=-Ax^{2}+yx^{2}-C
Reorder the terms.
xB=yx^{2}-Ax^{2}-C
The equation is in standard form.
\frac{xB}{x}=\frac{yx^{2}-Ax^{2}-C}{x}
Divide both sides by x.
B=\frac{yx^{2}-Ax^{2}-C}{x}
Dividing by x undoes the multiplication by x.
B=xy-Ax-\frac{C}{x}
Divide -Ax^{2}+yx^{2}-C by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}