y = 6000 + ( a - 1 ) \times 6000 \times 25 \%
Solve for a
a=\frac{y-4500}{1500}
Solve for y
y=1500\left(a+3\right)
Graph
Share
Copied to clipboard
y=6000+\left(a-1\right)\times 6000\times \frac{1}{4}
Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
y=6000+\left(a-1\right)\times 1500
Multiply 6000 and \frac{1}{4} to get 1500.
y=6000+1500a-1500
Use the distributive property to multiply a-1 by 1500.
y=4500+1500a
Subtract 1500 from 6000 to get 4500.
4500+1500a=y
Swap sides so that all variable terms are on the left hand side.
1500a=y-4500
Subtract 4500 from both sides.
\frac{1500a}{1500}=\frac{y-4500}{1500}
Divide both sides by 1500.
a=\frac{y-4500}{1500}
Dividing by 1500 undoes the multiplication by 1500.
a=\frac{y}{1500}-3
Divide y-4500 by 1500.
y=6000+\left(a-1\right)\times 6000\times \frac{1}{4}
Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
y=6000+\left(a-1\right)\times 1500
Multiply 6000 and \frac{1}{4} to get 1500.
y=6000+1500a-1500
Use the distributive property to multiply a-1 by 1500.
y=4500+1500a
Subtract 1500 from 6000 to get 4500.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}