Solve for x
x=\frac{\left(y+1\right)^{2}+32}{16}
\frac{y+1}{4}\geq 0
Solve for x (complex solution)
x=\frac{\left(y+1\right)^{2}+32}{16}
y=-1\text{ or }arg(\frac{y+1}{4})<\pi
Solve for y
y=4\sqrt{x-2}-1
x\geq 2
Graph
Share
Copied to clipboard
4\sqrt{x-2}-1=y
Swap sides so that all variable terms are on the left hand side.
4\sqrt{x-2}=y+1
Add 1 to both sides.
\frac{4\sqrt{x-2}}{4}=\frac{y+1}{4}
Divide both sides by 4.
\sqrt{x-2}=\frac{y+1}{4}
Dividing by 4 undoes the multiplication by 4.
x-2=\frac{\left(y+1\right)^{2}}{16}
Square both sides of the equation.
x-2-\left(-2\right)=\frac{\left(y+1\right)^{2}}{16}-\left(-2\right)
Add 2 to both sides of the equation.
x=\frac{\left(y+1\right)^{2}}{16}-\left(-2\right)
Subtracting -2 from itself leaves 0.
x=\frac{\left(y+1\right)^{2}}{16}+2
Subtract -2 from \frac{\left(y+1\right)^{2}}{16}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}