Solve for y
y=10t\left(1-t\right)\left(91t^{2}-103t+38\right)
Graph
Share
Copied to clipboard
y=380t\left(1-3t+3t^{2}-t^{3}\right)-270t^{2}\left(1-t\right)^{2}+260t^{3}\left(1-t\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(1-t\right)^{3}.
y=380t-1140t^{2}+1140t^{3}-380t^{4}-270t^{2}\left(1-t\right)^{2}+260t^{3}\left(1-t\right)
Use the distributive property to multiply 380t by 1-3t+3t^{2}-t^{3}.
y=380t-1140t^{2}+1140t^{3}-380t^{4}-270t^{2}\left(1-2t+t^{2}\right)+260t^{3}\left(1-t\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-t\right)^{2}.
y=380t-1140t^{2}+1140t^{3}-380t^{4}-270t^{2}\left(1-2t+t^{2}\right)+260t^{3}-260t^{4}
Use the distributive property to multiply 260t^{3} by 1-t.
y=380t-1140t^{2}+1140t^{3}-380t^{4}-270t^{2}+540t^{3}-270t^{4}+260t^{3}-260t^{4}
Use the distributive property to multiply -270t^{2} by 1-2t+t^{2}.
y=380t-1410t^{2}+1140t^{3}-380t^{4}+540t^{3}-270t^{4}+260t^{3}-260t^{4}
Combine -1140t^{2} and -270t^{2} to get -1410t^{2}.
y=380t-1410t^{2}+1680t^{3}-380t^{4}-270t^{4}+260t^{3}-260t^{4}
Combine 1140t^{3} and 540t^{3} to get 1680t^{3}.
y=380t-1410t^{2}+1680t^{3}-650t^{4}+260t^{3}-260t^{4}
Combine -380t^{4} and -270t^{4} to get -650t^{4}.
y=380t-1410t^{2}+1940t^{3}-650t^{4}-260t^{4}
Combine 1680t^{3} and 260t^{3} to get 1940t^{3}.
y=380t-1410t^{2}+1940t^{3}-910t^{4}
Combine -650t^{4} and -260t^{4} to get -910t^{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}