Solve for n (complex solution)
\left\{\begin{matrix}n=\frac{\ln(y)-\ln(x)-\ln(3)}{\ln(x)}+\frac{2\pi n_{1}i}{\ln(x)}\text{, }n_{1}\in \mathrm{Z}\text{, }&y\neq 0\text{ and }x\neq 1\text{ and }x\neq 0\\n\in \mathrm{C}\text{, }&\left(x=0\text{ and }y=0\right)\text{ or }\left(x=1\text{ and }y=3\right)\end{matrix}\right.
Solve for x (complex solution)
x=\left(\frac{|y|}{3}\right)^{\frac{Re(n)\left(Im(n)\right)^{2}-iIm(n)\left(Re(n)\right)^{2}+\left(Re(n)\right)^{3}-i\left(Im(n)\right)^{3}-2iRe(n)Im(n)+3\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}+3Re(n)-iIm(n)+1}{\left(\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}+2Re(n)+1\right)^{2}}}e^{\frac{Im(n)arg(y)+iRe(n)arg(y)+iarg(y)}{\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}+2Re(n)+1}-\frac{2\pi n_{1}iRe(n)}{\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}+2Re(n)+1}-\frac{2\pi n_{1}Im(n)}{\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}+2Re(n)+1}-\frac{2\pi n_{1}i}{\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}+2Re(n)+1}}
n_{1}\in \mathrm{Z}
Solve for n
\left\{\begin{matrix}n=-\frac{\ln(x)-\ln(y)+\ln(3)}{\ln(x)}\text{, }&y>0\text{ and }x\neq 1\text{ and }x>0\\n\in \mathrm{R}\text{, }&\left(x=-1\text{ and }y=-3\text{ and }Numerator(n+1)\text{bmod}2=1\text{ and }Denominator(n)\text{bmod}2=1\right)\text{ or }\left(y=3\text{ and }x=1\right)\\n>-1\text{, }&x=0\text{ and }y=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\left(\frac{y}{3}\right)^{\frac{1}{n+1}}\text{, }&\left(Numerator(n+1)\text{bmod}2=1\text{ and }n\neq -1\text{ and }Denominator(n)\text{bmod}2=1\text{ and }y<0\text{ and }\left(\frac{y}{3}\right)^{\frac{1}{n+1}}\neq 0\right)\text{ or }\left(\left(\frac{y}{3}\right)^{\frac{1}{n+1}}<0\text{ and }y>0\text{ and }n\neq -1\text{ and }Denominator(n)\text{bmod}2=1\right)\text{ or }\left(y=0\text{ and }n>-1\right)\text{ or }\left(\left(\frac{y}{3}\right)^{\frac{1}{n+1}}>0\text{ and }y>0\text{ and }n\neq -1\right)\\x=-\left(\frac{y}{3}\right)^{\frac{1}{n+1}}\text{, }&\left(y<0\text{ and }Numerator(n+1)\text{bmod}2=1\text{ and }n\neq -1\text{ and }Numerator(n+1)\text{bmod}2=0\text{ and }Denominator(n)\text{bmod}2=1\text{ and }\left(\frac{y}{3}\right)^{\frac{1}{n+1}}\neq 0\right)\text{ or }\left(y>0\text{ and }n\neq -1\text{ and }\left(\frac{y}{3}\right)^{\frac{1}{n+1}}>0\text{ and }Numerator(n+1)\text{bmod}2=0\text{ and }Denominator(n)\text{bmod}2=1\right)\text{ or }\left(Numerator(n+1)\text{bmod}2=0\text{ and }y=0\text{ and }n>-1\right)\text{ or }\left(y>0\text{ and }n\neq -1\text{ and }\left(\frac{y}{3}\right)^{\frac{1}{n+1}}<0\text{ and }Numerator(n+1)\text{bmod}2=0\right)\\x\neq 0\text{, }&n=-1\text{ and }y=3\end{matrix}\right.
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}