Solve for k_0 (complex solution)
\left\{\begin{matrix}k_{0}=\frac{2y}{3sx}\text{, }&x\neq 0\text{ and }s\neq 0\\k_{0}\in \mathrm{C}\text{, }&\left(s=0\text{ or }x=0\right)\text{ and }y=0\end{matrix}\right.
Solve for s (complex solution)
\left\{\begin{matrix}s=\frac{2y}{3k_{0}x}\text{, }&x\neq 0\text{ and }k_{0}\neq 0\\s\in \mathrm{C}\text{, }&\left(k_{0}=0\text{ or }x=0\right)\text{ and }y=0\end{matrix}\right.
Solve for k_0
\left\{\begin{matrix}k_{0}=\frac{2y}{3sx}\text{, }&x\neq 0\text{ and }s\neq 0\\k_{0}\in \mathrm{R}\text{, }&\left(s=0\text{ or }x=0\right)\text{ and }y=0\end{matrix}\right.
Solve for s
\left\{\begin{matrix}s=\frac{2y}{3k_{0}x}\text{, }&x\neq 0\text{ and }k_{0}\neq 0\\s\in \mathrm{R}\text{, }&\left(k_{0}=0\text{ or }x=0\right)\text{ and }y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
y=\frac{3}{2}k_{0}sx
Multiply 3 and \frac{1}{2} to get \frac{3}{2}.
\frac{3}{2}k_{0}sx=y
Swap sides so that all variable terms are on the left hand side.
\frac{3sx}{2}k_{0}=y
The equation is in standard form.
\frac{2\times \frac{3sx}{2}k_{0}}{3sx}=\frac{2y}{3sx}
Divide both sides by \frac{3}{2}sx.
k_{0}=\frac{2y}{3sx}
Dividing by \frac{3}{2}sx undoes the multiplication by \frac{3}{2}sx.
y=\frac{3}{2}k_{0}sx
Multiply 3 and \frac{1}{2} to get \frac{3}{2}.
\frac{3}{2}k_{0}sx=y
Swap sides so that all variable terms are on the left hand side.
\frac{3k_{0}x}{2}s=y
The equation is in standard form.
\frac{2\times \frac{3k_{0}x}{2}s}{3k_{0}x}=\frac{2y}{3k_{0}x}
Divide both sides by \frac{3}{2}k_{0}x.
s=\frac{2y}{3k_{0}x}
Dividing by \frac{3}{2}k_{0}x undoes the multiplication by \frac{3}{2}k_{0}x.
y=\frac{3}{2}k_{0}sx
Multiply 3 and \frac{1}{2} to get \frac{3}{2}.
\frac{3}{2}k_{0}sx=y
Swap sides so that all variable terms are on the left hand side.
\frac{3sx}{2}k_{0}=y
The equation is in standard form.
\frac{2\times \frac{3sx}{2}k_{0}}{3sx}=\frac{2y}{3sx}
Divide both sides by \frac{3}{2}sx.
k_{0}=\frac{2y}{3sx}
Dividing by \frac{3}{2}sx undoes the multiplication by \frac{3}{2}sx.
y=\frac{3}{2}k_{0}sx
Multiply 3 and \frac{1}{2} to get \frac{3}{2}.
\frac{3}{2}k_{0}sx=y
Swap sides so that all variable terms are on the left hand side.
\frac{3k_{0}x}{2}s=y
The equation is in standard form.
\frac{2\times \frac{3k_{0}x}{2}s}{3k_{0}x}=\frac{2y}{3k_{0}x}
Divide both sides by \frac{3}{2}k_{0}x.
s=\frac{2y}{3k_{0}x}
Dividing by \frac{3}{2}k_{0}x undoes the multiplication by \frac{3}{2}k_{0}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}