Solve for f (complex solution)
\left\{\begin{matrix}f=-\frac{1-y}{3\left(x-2\right)}\text{, }&x\neq 2\\f\in \mathrm{C}\text{, }&y=1\text{ and }x=2\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{1-6f-y}{3f}\text{, }&f\neq 0\\x\in \mathrm{C}\text{, }&y=1\text{ and }f=0\end{matrix}\right.
Solve for f
\left\{\begin{matrix}f=-\frac{1-y}{3\left(x-2\right)}\text{, }&x\neq 2\\f\in \mathrm{R}\text{, }&y=1\text{ and }x=2\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{1-6f-y}{3f}\text{, }&f\neq 0\\x\in \mathrm{R}\text{, }&y=1\text{ and }f=0\end{matrix}\right.
Graph
Share
Copied to clipboard
y=3fx-6f+1
Use the distributive property to multiply 3f by x-2.
3fx-6f+1=y
Swap sides so that all variable terms are on the left hand side.
3fx-6f=y-1
Subtract 1 from both sides.
\left(3x-6\right)f=y-1
Combine all terms containing f.
\frac{\left(3x-6\right)f}{3x-6}=\frac{y-1}{3x-6}
Divide both sides by 3x-6.
f=\frac{y-1}{3x-6}
Dividing by 3x-6 undoes the multiplication by 3x-6.
f=\frac{y-1}{3\left(x-2\right)}
Divide y-1 by 3x-6.
y=3fx-6f+1
Use the distributive property to multiply 3f by x-2.
3fx-6f+1=y
Swap sides so that all variable terms are on the left hand side.
3fx+1=y+6f
Add 6f to both sides.
3fx=y+6f-1
Subtract 1 from both sides.
\frac{3fx}{3f}=\frac{y+6f-1}{3f}
Divide both sides by 3f.
x=\frac{y+6f-1}{3f}
Dividing by 3f undoes the multiplication by 3f.
y=3fx-6f+1
Use the distributive property to multiply 3f by x-2.
3fx-6f+1=y
Swap sides so that all variable terms are on the left hand side.
3fx-6f=y-1
Subtract 1 from both sides.
\left(3x-6\right)f=y-1
Combine all terms containing f.
\frac{\left(3x-6\right)f}{3x-6}=\frac{y-1}{3x-6}
Divide both sides by 3x-6.
f=\frac{y-1}{3x-6}
Dividing by 3x-6 undoes the multiplication by 3x-6.
f=\frac{y-1}{3\left(x-2\right)}
Divide y-1 by 3x-6.
y=3fx-6f+1
Use the distributive property to multiply 3f by x-2.
3fx-6f+1=y
Swap sides so that all variable terms are on the left hand side.
3fx+1=y+6f
Add 6f to both sides.
3fx=y+6f-1
Subtract 1 from both sides.
\frac{3fx}{3f}=\frac{y+6f-1}{3f}
Divide both sides by 3f.
x=\frac{y+6f-1}{3f}
Dividing by 3f undoes the multiplication by 3f.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}