Solve for k
\left\{\begin{matrix}k=-\frac{2x^{2}+3x-y+2}{x+1}\text{, }&x\neq -1\\k\in \mathrm{R}\text{, }&y=1\text{ and }x=-1\end{matrix}\right.
Solve for x
x=\frac{\sqrt{8y+k^{2}-2k-7}-k-3}{4}
x=\frac{-\sqrt{8y+k^{2}-2k-7}-k-3}{4}\text{, }y\geq -\frac{k^{2}}{8}+\frac{k}{4}+\frac{7}{8}
Graph
Share
Copied to clipboard
y=2x^{2}+kx+3x+k+2
Use the distributive property to multiply k+3 by x.
2x^{2}+kx+3x+k+2=y
Swap sides so that all variable terms are on the left hand side.
kx+3x+k+2=y-2x^{2}
Subtract 2x^{2} from both sides.
kx+k+2=y-2x^{2}-3x
Subtract 3x from both sides.
kx+k=y-2x^{2}-3x-2
Subtract 2 from both sides.
\left(x+1\right)k=y-2x^{2}-3x-2
Combine all terms containing k.
\left(x+1\right)k=-2x^{2}-3x+y-2
The equation is in standard form.
\frac{\left(x+1\right)k}{x+1}=\frac{-2x^{2}-3x+y-2}{x+1}
Divide both sides by x+1.
k=\frac{-2x^{2}-3x+y-2}{x+1}
Dividing by x+1 undoes the multiplication by x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}