Solve for u
\left\{\begin{matrix}u=-\frac{wx-y-1}{2x}\text{, }&x\neq 0\\u\in \mathrm{R}\text{, }&y=-1\text{ and }x=0\end{matrix}\right.
Solve for w
\left\{\begin{matrix}w=\frac{1+y-2ux}{x}\text{, }&x\neq 0\\w\in \mathrm{R}\text{, }&y=-1\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
2ux+wx-1=y
Swap sides so that all variable terms are on the left hand side.
2ux-1=y-wx
Subtract wx from both sides.
2ux=y-wx+1
Add 1 to both sides.
2xu=1+y-wx
The equation is in standard form.
\frac{2xu}{2x}=\frac{1+y-wx}{2x}
Divide both sides by 2x.
u=\frac{1+y-wx}{2x}
Dividing by 2x undoes the multiplication by 2x.
2ux+wx-1=y
Swap sides so that all variable terms are on the left hand side.
wx-1=y-2ux
Subtract 2ux from both sides.
wx=y-2ux+1
Add 1 to both sides.
xw=1+y-2ux
The equation is in standard form.
\frac{xw}{x}=\frac{1+y-2ux}{x}
Divide both sides by x.
w=\frac{1+y-2ux}{x}
Dividing by x undoes the multiplication by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}