Skip to main content
Solve for f (complex solution)
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for f
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2-\frac{1}{2}f\left(x+1\right)=y
Swap sides so that all variable terms are on the left hand side.
2-\frac{1}{2}fx-\frac{1}{2}f=y
Use the distributive property to multiply -\frac{1}{2}f by x+1.
-\frac{1}{2}fx-\frac{1}{2}f=y-2
Subtract 2 from both sides.
\left(-\frac{1}{2}x-\frac{1}{2}\right)f=y-2
Combine all terms containing f.
\frac{-x-1}{2}f=y-2
The equation is in standard form.
\frac{2\times \frac{-x-1}{2}f}{-x-1}=\frac{2\left(y-2\right)}{-x-1}
Divide both sides by -\frac{1}{2}x-\frac{1}{2}.
f=\frac{2\left(y-2\right)}{-x-1}
Dividing by -\frac{1}{2}x-\frac{1}{2} undoes the multiplication by -\frac{1}{2}x-\frac{1}{2}.
f=-\frac{2\left(y-2\right)}{x+1}
Divide y-2 by -\frac{1}{2}x-\frac{1}{2}.
2-\frac{1}{2}f\left(x+1\right)=y
Swap sides so that all variable terms are on the left hand side.
2-\frac{1}{2}fx-\frac{1}{2}f=y
Use the distributive property to multiply -\frac{1}{2}f by x+1.
-\frac{1}{2}fx-\frac{1}{2}f=y-2
Subtract 2 from both sides.
-\frac{1}{2}fx=y-2+\frac{1}{2}f
Add \frac{1}{2}f to both sides.
\left(-\frac{f}{2}\right)x=\frac{f}{2}+y-2
The equation is in standard form.
\frac{\left(-\frac{f}{2}\right)x}{-\frac{f}{2}}=\frac{\frac{f}{2}+y-2}{-\frac{f}{2}}
Divide both sides by -\frac{1}{2}f.
x=\frac{\frac{f}{2}+y-2}{-\frac{f}{2}}
Dividing by -\frac{1}{2}f undoes the multiplication by -\frac{1}{2}f.
x=-\frac{2y+f-4}{f}
Divide y-2+\frac{f}{2} by -\frac{1}{2}f.
2-\frac{1}{2}f\left(x+1\right)=y
Swap sides so that all variable terms are on the left hand side.
2-\frac{1}{2}fx-\frac{1}{2}f=y
Use the distributive property to multiply -\frac{1}{2}f by x+1.
-\frac{1}{2}fx-\frac{1}{2}f=y-2
Subtract 2 from both sides.
\left(-\frac{1}{2}x-\frac{1}{2}\right)f=y-2
Combine all terms containing f.
\frac{-x-1}{2}f=y-2
The equation is in standard form.
\frac{2\times \frac{-x-1}{2}f}{-x-1}=\frac{2\left(y-2\right)}{-x-1}
Divide both sides by -\frac{1}{2}x-\frac{1}{2}.
f=\frac{2\left(y-2\right)}{-x-1}
Dividing by -\frac{1}{2}x-\frac{1}{2} undoes the multiplication by -\frac{1}{2}x-\frac{1}{2}.
f=-\frac{2\left(y-2\right)}{x+1}
Divide y-2 by -\frac{1}{2}x-\frac{1}{2}.
2-\frac{1}{2}f\left(x+1\right)=y
Swap sides so that all variable terms are on the left hand side.
2-\frac{1}{2}fx-\frac{1}{2}f=y
Use the distributive property to multiply -\frac{1}{2}f by x+1.
-\frac{1}{2}fx-\frac{1}{2}f=y-2
Subtract 2 from both sides.
-\frac{1}{2}fx=y-2+\frac{1}{2}f
Add \frac{1}{2}f to both sides.
\left(-\frac{f}{2}\right)x=\frac{f}{2}+y-2
The equation is in standard form.
\frac{\left(-\frac{f}{2}\right)x}{-\frac{f}{2}}=\frac{\frac{f}{2}+y-2}{-\frac{f}{2}}
Divide both sides by -\frac{1}{2}f.
x=\frac{\frac{f}{2}+y-2}{-\frac{f}{2}}
Dividing by -\frac{1}{2}f undoes the multiplication by -\frac{1}{2}f.
x=-\frac{2y+f-4}{f}
Divide y-2+\frac{f}{2} by -\frac{1}{2}f.