Solve for f (complex solution)
\left\{\begin{matrix}f=\frac{2\left(2-y\right)}{x+1}\text{, }&x\neq -1\\f\in \mathrm{C}\text{, }&y=2\text{ and }x=-1\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{4-f-2y}{f}\text{, }&f\neq 0\\x\in \mathrm{C}\text{, }&y=2\text{ and }f=0\end{matrix}\right.
Solve for f
\left\{\begin{matrix}f=\frac{2\left(2-y\right)}{x+1}\text{, }&x\neq -1\\f\in \mathrm{R}\text{, }&y=2\text{ and }x=-1\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{4-f-2y}{f}\text{, }&f\neq 0\\x\in \mathrm{R}\text{, }&y=2\text{ and }f=0\end{matrix}\right.
Graph
Share
Copied to clipboard
2-\frac{1}{2}f\left(x+1\right)=y
Swap sides so that all variable terms are on the left hand side.
2-\frac{1}{2}fx-\frac{1}{2}f=y
Use the distributive property to multiply -\frac{1}{2}f by x+1.
-\frac{1}{2}fx-\frac{1}{2}f=y-2
Subtract 2 from both sides.
\left(-\frac{1}{2}x-\frac{1}{2}\right)f=y-2
Combine all terms containing f.
\frac{-x-1}{2}f=y-2
The equation is in standard form.
\frac{2\times \frac{-x-1}{2}f}{-x-1}=\frac{2\left(y-2\right)}{-x-1}
Divide both sides by -\frac{1}{2}x-\frac{1}{2}.
f=\frac{2\left(y-2\right)}{-x-1}
Dividing by -\frac{1}{2}x-\frac{1}{2} undoes the multiplication by -\frac{1}{2}x-\frac{1}{2}.
f=-\frac{2\left(y-2\right)}{x+1}
Divide y-2 by -\frac{1}{2}x-\frac{1}{2}.
2-\frac{1}{2}f\left(x+1\right)=y
Swap sides so that all variable terms are on the left hand side.
2-\frac{1}{2}fx-\frac{1}{2}f=y
Use the distributive property to multiply -\frac{1}{2}f by x+1.
-\frac{1}{2}fx-\frac{1}{2}f=y-2
Subtract 2 from both sides.
-\frac{1}{2}fx=y-2+\frac{1}{2}f
Add \frac{1}{2}f to both sides.
\left(-\frac{f}{2}\right)x=\frac{f}{2}+y-2
The equation is in standard form.
\frac{\left(-\frac{f}{2}\right)x}{-\frac{f}{2}}=\frac{\frac{f}{2}+y-2}{-\frac{f}{2}}
Divide both sides by -\frac{1}{2}f.
x=\frac{\frac{f}{2}+y-2}{-\frac{f}{2}}
Dividing by -\frac{1}{2}f undoes the multiplication by -\frac{1}{2}f.
x=-\frac{2y+f-4}{f}
Divide y-2+\frac{f}{2} by -\frac{1}{2}f.
2-\frac{1}{2}f\left(x+1\right)=y
Swap sides so that all variable terms are on the left hand side.
2-\frac{1}{2}fx-\frac{1}{2}f=y
Use the distributive property to multiply -\frac{1}{2}f by x+1.
-\frac{1}{2}fx-\frac{1}{2}f=y-2
Subtract 2 from both sides.
\left(-\frac{1}{2}x-\frac{1}{2}\right)f=y-2
Combine all terms containing f.
\frac{-x-1}{2}f=y-2
The equation is in standard form.
\frac{2\times \frac{-x-1}{2}f}{-x-1}=\frac{2\left(y-2\right)}{-x-1}
Divide both sides by -\frac{1}{2}x-\frac{1}{2}.
f=\frac{2\left(y-2\right)}{-x-1}
Dividing by -\frac{1}{2}x-\frac{1}{2} undoes the multiplication by -\frac{1}{2}x-\frac{1}{2}.
f=-\frac{2\left(y-2\right)}{x+1}
Divide y-2 by -\frac{1}{2}x-\frac{1}{2}.
2-\frac{1}{2}f\left(x+1\right)=y
Swap sides so that all variable terms are on the left hand side.
2-\frac{1}{2}fx-\frac{1}{2}f=y
Use the distributive property to multiply -\frac{1}{2}f by x+1.
-\frac{1}{2}fx-\frac{1}{2}f=y-2
Subtract 2 from both sides.
-\frac{1}{2}fx=y-2+\frac{1}{2}f
Add \frac{1}{2}f to both sides.
\left(-\frac{f}{2}\right)x=\frac{f}{2}+y-2
The equation is in standard form.
\frac{\left(-\frac{f}{2}\right)x}{-\frac{f}{2}}=\frac{\frac{f}{2}+y-2}{-\frac{f}{2}}
Divide both sides by -\frac{1}{2}f.
x=\frac{\frac{f}{2}+y-2}{-\frac{f}{2}}
Dividing by -\frac{1}{2}f undoes the multiplication by -\frac{1}{2}f.
x=-\frac{2y+f-4}{f}
Divide y-2+\frac{f}{2} by -\frac{1}{2}f.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}