Solve for m (complex solution)
\left\{\begin{matrix}m=-\frac{-2x^{2}+8x+y-6}{2\left(x-1\right)}\text{, }&x\neq 1\\m\in \mathrm{C}\text{, }&y=0\text{ and }x=1\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=-\frac{-2x^{2}+8x+y-6}{2\left(x-1\right)}\text{, }&x\neq 1\\m\in \mathrm{R}\text{, }&y=0\text{ and }x=1\end{matrix}\right.
Solve for x (complex solution)
x=\frac{\sqrt{2y+m^{2}+4m+4}+m+4}{2}
x=\frac{-\sqrt{2y+m^{2}+4m+4}+m+4}{2}
Solve for x
x=\frac{\sqrt{2y+m^{2}+4m+4}+m+4}{2}
x=\frac{-\sqrt{2y+m^{2}+4m+4}+m+4}{2}\text{, }y\geq -\frac{\left(m+2\right)^{2}}{2}
Graph
Share
Copied to clipboard
y=\left(2x-2\right)\left(x-m-3\right)
Use the distributive property to multiply 2 by x-1.
y=2x^{2}-2xm-8x+2m+6
Use the distributive property to multiply 2x-2 by x-m-3 and combine like terms.
2x^{2}-2xm-8x+2m+6=y
Swap sides so that all variable terms are on the left hand side.
-2xm-8x+2m+6=y-2x^{2}
Subtract 2x^{2} from both sides.
-2xm+2m+6=y-2x^{2}+8x
Add 8x to both sides.
-2xm+2m=y-2x^{2}+8x-6
Subtract 6 from both sides.
\left(-2x+2\right)m=y-2x^{2}+8x-6
Combine all terms containing m.
\left(2-2x\right)m=-2x^{2}+8x+y-6
The equation is in standard form.
\frac{\left(2-2x\right)m}{2-2x}=\frac{-2x^{2}+8x+y-6}{2-2x}
Divide both sides by -2x+2.
m=\frac{-2x^{2}+8x+y-6}{2-2x}
Dividing by -2x+2 undoes the multiplication by -2x+2.
m=\frac{-2x^{2}+8x+y-6}{2\left(1-x\right)}
Divide -2x^{2}+8x+y-6 by -2x+2.
y=\left(2x-2\right)\left(x-m-3\right)
Use the distributive property to multiply 2 by x-1.
y=2x^{2}-2xm-8x+2m+6
Use the distributive property to multiply 2x-2 by x-m-3 and combine like terms.
2x^{2}-2xm-8x+2m+6=y
Swap sides so that all variable terms are on the left hand side.
-2xm-8x+2m+6=y-2x^{2}
Subtract 2x^{2} from both sides.
-2xm+2m+6=y-2x^{2}+8x
Add 8x to both sides.
-2xm+2m=y-2x^{2}+8x-6
Subtract 6 from both sides.
\left(-2x+2\right)m=y-2x^{2}+8x-6
Combine all terms containing m.
\left(2-2x\right)m=-2x^{2}+8x+y-6
The equation is in standard form.
\frac{\left(2-2x\right)m}{2-2x}=\frac{-2x^{2}+8x+y-6}{2-2x}
Divide both sides by -2x+2.
m=\frac{-2x^{2}+8x+y-6}{2-2x}
Dividing by -2x+2 undoes the multiplication by -2x+2.
m=\frac{-2x^{2}+8x+y-6}{2\left(1-x\right)}
Divide -2x^{2}+8x+y-6 by -2x+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}