Solve for y
y=21\sqrt{10}\approx 66.407830864
Assign y
y≔21\sqrt{10}
Graph
Share
Copied to clipboard
y=2\left(6\sqrt{10}+2\sqrt{2}\sqrt{405}\right)+3\left(\sqrt{810}-\sqrt{20}\sqrt{162}\right)
Factor 360=6^{2}\times 10. Rewrite the square root of the product \sqrt{6^{2}\times 10} as the product of square roots \sqrt{6^{2}}\sqrt{10}. Take the square root of 6^{2}.
y=2\left(6\sqrt{10}+2\sqrt{2}\times 9\sqrt{5}\right)+3\left(\sqrt{810}-\sqrt{20}\sqrt{162}\right)
Factor 405=9^{2}\times 5. Rewrite the square root of the product \sqrt{9^{2}\times 5} as the product of square roots \sqrt{9^{2}}\sqrt{5}. Take the square root of 9^{2}.
y=2\left(6\sqrt{10}+18\sqrt{2}\sqrt{5}\right)+3\left(\sqrt{810}-\sqrt{20}\sqrt{162}\right)
Multiply 2 and 9 to get 18.
y=2\left(6\sqrt{10}+18\sqrt{10}\right)+3\left(\sqrt{810}-\sqrt{20}\sqrt{162}\right)
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
y=2\times 24\sqrt{10}+3\left(\sqrt{810}-\sqrt{20}\sqrt{162}\right)
Combine 6\sqrt{10} and 18\sqrt{10} to get 24\sqrt{10}.
y=48\sqrt{10}+3\left(\sqrt{810}-\sqrt{20}\sqrt{162}\right)
Multiply 2 and 24 to get 48.
y=48\sqrt{10}+3\left(9\sqrt{10}-\sqrt{20}\sqrt{162}\right)
Factor 810=9^{2}\times 10. Rewrite the square root of the product \sqrt{9^{2}\times 10} as the product of square roots \sqrt{9^{2}}\sqrt{10}. Take the square root of 9^{2}.
y=48\sqrt{10}+3\left(9\sqrt{10}-2\sqrt{5}\sqrt{162}\right)
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
y=48\sqrt{10}+3\left(9\sqrt{10}-2\sqrt{5}\times 9\sqrt{2}\right)
Factor 162=9^{2}\times 2. Rewrite the square root of the product \sqrt{9^{2}\times 2} as the product of square roots \sqrt{9^{2}}\sqrt{2}. Take the square root of 9^{2}.
y=48\sqrt{10}+3\left(9\sqrt{10}-18\sqrt{5}\sqrt{2}\right)
Multiply 2 and 9 to get 18.
y=48\sqrt{10}+3\left(9\sqrt{10}-18\sqrt{10}\right)
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
y=48\sqrt{10}+3\left(-9\right)\sqrt{10}
Combine 9\sqrt{10} and -18\sqrt{10} to get -9\sqrt{10}.
y=48\sqrt{10}-27\sqrt{10}
Multiply 3 and -9 to get -27.
y=21\sqrt{10}
Combine 48\sqrt{10} and -27\sqrt{10} to get 21\sqrt{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}