Solve for x (complex solution)
x=\left(-1\right)\left(\left(-i\right)\ln(\frac{1}{2}iy+\left(-\frac{1}{2}i\right)\left(y^{2}-4\right)^{\frac{1}{2}})+2\pi n_{1}\right)^{\frac{1}{2}}\text{, }n_{1}\in \mathrm{Z}
x=\left(\left(-i\right)\ln(\frac{1}{2}iy+\left(-\frac{1}{2}i\right)\left(y^{2}-4\right)^{\frac{1}{2}})+2\pi n_{1}\right)^{\frac{1}{2}}\text{, }n_{1}\in \mathrm{Z}
x=\left(-1\right)\left(\left(-i\right)\ln(\frac{1}{2}iy+\frac{1}{2}i\left(y^{2}-4\right)^{\frac{1}{2}})+2\pi n_{5}\right)^{\frac{1}{2}}\text{, }n_{5}\in \mathrm{Z}
x=\left(\left(-i\right)\ln(\frac{1}{2}iy+\frac{1}{2}i\left(y^{2}-4\right)^{\frac{1}{2}})+2\pi n_{5}\right)^{\frac{1}{2}}\text{, }n_{5}\in \mathrm{Z}
Solve for x
\left\{\begin{matrix}\\x=-\sqrt{\arcsin(\frac{y}{2})+2\pi n_{1}}\text{, }n_{1}\in \mathrm{Z}\text{, }\left(n_{1}\geq 1\text{ and }|y|\leq 2\right)\text{ or }\left(n_{1}>-1\text{ and }y\leq 2\text{ and }y\geq 0\right)\text{; }x=\sqrt{\arcsin(\frac{y}{2})+2\pi n_{1}}\text{, }n_{1}\in \mathrm{Z}\text{, }\left(n_{1}\geq 1\text{ and }|y|\leq 2\right)\text{ or }\left(n_{1}>-1\text{ and }y\leq 2\text{ and }y\geq 0\right)\text{, }&\text{unconditionally}\\x=\sqrt{-\arcsin(\frac{y}{2})+2\pi n_{2}+\pi }\text{, }n_{2}\in \mathrm{Z}\text{, }n_{2}>-1\text{; }x=-\sqrt{-\arcsin(\frac{y}{2})+2\pi n_{2}+\pi }\text{, }n_{2}\in \mathrm{Z}\text{, }n_{2}>-1\text{, }&|y|\leq 2\end{matrix}\right.
Solve for y
y=2\sin(x^{2})
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}