Solve for a (complex solution)
a=-xy+2x+\sqrt{x}
x\neq 0
Solve for a
a=-xy+2x+\sqrt{x}
x>0
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\left(\frac{\sqrt{1+8a-4ay}+1}{2-y}\right)^{2}}{4}\text{, }&arg(\frac{\sqrt{1+8a-4ay}+1}{4-2y})\geq \pi \text{ and }y\neq 2\\x=\frac{\left(\frac{-\sqrt{1+8a-4ay}+1}{2-y}\right)^{2}}{4}\text{, }&a\neq 0\text{ and }y\neq 2\text{ and }arg(\frac{-\sqrt{1+8a-4ay}+1}{4-2y})\geq \pi \\x=a^{2}\text{, }&a\neq 0\text{ and }y=2\text{ and }arg(a)<\pi \end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\left(\frac{\sqrt{1+8a-4ay}+1}{2-y}\right)^{2}}{4}\text{, }&\left(y=\frac{8a+1}{4a}\text{ and }a>0\right)\text{ or }\left(a=0\text{ and }y>2\right)\text{ or }\left(y>2\text{ and }y>\frac{8a+1}{4a}\text{ and }a<0\right)\text{ or }\left(y>2\text{ and }y\leq \frac{8a+1}{4a}\text{ and }a>0\right)\\x=\frac{\left(\frac{-\sqrt{1+8a-4ay}+1}{2-y}\right)^{2}}{4}\text{, }&\left(y\neq 2\text{ and }y<\frac{8a+1}{4a}\text{ and }a>0\right)\text{ or }\left(y>2\text{ and }y\leq \frac{8a+1}{4a}\text{ and }a>0\right)\text{ or }\left(y=\frac{8a+1}{4a}\text{ and }a>0\right)\\x=a^{2}\text{, }&y=2\text{ and }a>0\end{matrix}\right.
Graph
Share
Copied to clipboard
yx=x\times 2+\sqrt{x}-a
Multiply both sides of the equation by x.
x\times 2+\sqrt{x}-a=yx
Swap sides so that all variable terms are on the left hand side.
\sqrt{x}-a=yx-x\times 2
Subtract x\times 2 from both sides.
-a=yx-x\times 2-\sqrt{x}
Subtract \sqrt{x} from both sides.
-a=yx-2x-\sqrt{x}
Multiply -1 and 2 to get -2.
-a=xy-2x-\sqrt{x}
The equation is in standard form.
\frac{-a}{-1}=\frac{xy-2x-\sqrt{x}}{-1}
Divide both sides by -1.
a=\frac{xy-2x-\sqrt{x}}{-1}
Dividing by -1 undoes the multiplication by -1.
a=-xy+2x+\sqrt{x}
Divide yx-2x-\sqrt{x} by -1.
yx=x\times 2+\sqrt{x}-a
Multiply both sides of the equation by x.
x\times 2+\sqrt{x}-a=yx
Swap sides so that all variable terms are on the left hand side.
\sqrt{x}-a=yx-x\times 2
Subtract x\times 2 from both sides.
-a=yx-x\times 2-\sqrt{x}
Subtract \sqrt{x} from both sides.
-a=yx-2x-\sqrt{x}
Multiply -1 and 2 to get -2.
-a=xy-2x-\sqrt{x}
The equation is in standard form.
\frac{-a}{-1}=\frac{xy-2x-\sqrt{x}}{-1}
Divide both sides by -1.
a=\frac{xy-2x-\sqrt{x}}{-1}
Dividing by -1 undoes the multiplication by -1.
a=-xy+2x+\sqrt{x}
Divide yx-2x-\sqrt{x} by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}